MATH-UA.120: Discrete Mathematics Fall 2011

This is a past class.

Class Time/Location

Tuesday, Thursday 11:00am-12:50pm, 7 East 12th Street, Room 123

Instructor

Andreas Kloeckner

Email

kloeckner@cims.nyu.edu

Office

Courant Institute, Warren Weaver Hall, Room 1105A

Office Hours

Monday, Wednesday 4pm-5pm

Class Webpage

http://wiki.tiker.net/Teaching/DiscreteMathFall2011

Email Listserv

http://lists.tiker.net/listinfo/discretefall11, discretefall11@tiker.net, archive

Topics and goals

Our major goal will be to familiarize ourselves with some of the important tools of discrete mathematics.

Text

Discrete Mathematics: Mathematical Reasoning and Proof with Puzzles, Patterns, and Games, by Douglas E. Ensley and J. Winston Crawley. Wiley, ISBN 0-471-47602-1

The book has a rather helpful companion web site which we will be using on occasion.

Assessment

Homework
will be assigned weekly (generally assigned and collected on Thursdays). In fairness to the other students in the course, late homework will generally not be accepted. We will, however, drop the lowest homework score in the computation of final grades. Please talk to the instructor in cases of emergency.
Quizzes
There will be three quizzes, as indicated on the calendar below. They are tentatively scheduled as indicated in the syllabus below. Quizzes will start at the beginning of class and run for about 15-20 minutes. We will also drop the lowest quiz.
Midterms
There will be two midterm examinations, as indicated on the calendar below.
Final
The time for the cumulative final examination will be announced as the end of the semester draws near. We will not be able to accommodate early finals for nonacademic, nonemergency reasons. Please plan your travel schedule accordingly.

Grades will be computed by a weighted average:

Homework

Quizzes

Midterm I

Midterm II

Final

10%

10%

20%

25%

35%

Final scores will be converted to letter grades beginning with the following scale:

93

90

87

83

80

75

65

50

A

A-

B+

B

B-

C+

C

D

As for a curve, these cutoffs might be adjusted, but only in the downward direction (to make letter grades higher).

On the homework, each problem will be worth three points, assigned as follows:

Points

Description of Work

3

Work is completely accurate and essentially perfect. Work is thoroughly developed, neat, and easy to read. Complete sentences are used.

2

Work is good, but incompletely developed, hard to read, unexplained, or jumbled. Answers which are not explained, even if correct, will generally receive 2 points. Work contains the 'right idea' but is flawed.

1

Work is sketchy. There is some correct work, but most of the work is incorrect.

0

Work minimal or non-existent. Solution is completely incorrect.

For the purposes of assembling the final grade, the grade on each homework set is converted to a percentage of all achievable points, on a scale from 0 to 100.

Material about Tests

Homework

/HomeworkSolutions

Tentative Calendar

Week

Day

Book Section

Topic/Notes

1

9/6

1.1

First Examples

9/8

1.2

Number Puzzles and Sequences

2

9/13

1.3

Truth-tellers, Liars, and Propositional Logic

9/15

1.4

Predicates

3

9/20

1.5

Quiz; Implications

9/22

2.1

Mathematical Writing

4

9/27

2.2

Proofs about Numbers

9/29

2.3

Mathematical Induction

5

10/4

2.5

Contradiction and the Pigeonhole Principle (taught by Matthew Elsey)

10/6

3.1, 3.2

Set Definitions and Operations (taught by Matthew Elsey)

6

10/11

Fall Break (no class)

10/13

Review

7

10/18

Midterm 1 on 1.1-2.5

10/20

3.3

Proving Set Properties

8

10/25

3.4

Boolean Algebra

10/27

4.1

Definitions of Functions, Diagrams

9

11/1

4.2

Quiz; Relations, Inverses, Composition

11/3

4.2

Relations, Inverses, Composition cont'd

10

11/8

4.3

Properties of Functions and Set Cardinality

11/10

4.4, 4.5

Properties of Relations, Equivalence Relations

11

11/15

Review

11/17

Midterm 2 on 2-4.5

12

11/22

5.1, 5.2

Intro to Combinatorics, Basic Rules for Counting

11/24

Thanksgiving Break (no class)

13

11/29

5.3, 5.4

Cominatorics and the Binomial Theorem, Binary Sequences

12/1

5.5

Recursive Counting

14

12/6

6.1, 6.2

Intro to Probability, Sum and Product Rules

12/8

6.3

Quiz; Probability in Games of Chance

15

12/13

7.1, 7.2

Graph Theory, Proofs about Graphs and Trees

12/15

Review

16

12/20

Final Exam 10am-11:50am /!\

(see also the academic calendar)

Teaching/DiscreteMathFall2011 (last edited 2012-02-14 21:19:13 by AndreasKloeckner)