
LU factorization

Matrices can do neat things:

- Blur an image

- Traverse a graph

- Rotate geometry

Can we come up with a generic "undo" button for these things?

(... that does *not* depend on the application) (!)

To warm up, let's try this for matrices where it is super-easy.

Example: Upper triangular matrices

Demo: Coding back-substitution

This is called "back-substitution". 

The analogous process for a lower triangular matrix is called

"forward substitution".



What do we do about more general matrices?

What's the difference between REF and an upper triangular matrix?

What happens if you don't just eliminate downward, but also upward?

In principle, same as in linear algebra class:

Gaussian elimination

Demo: Vanilla Gaussian Elimination

Leads to Row Echelon Form:

Every row in REF is a linear combination of the original rows.

The REF matrix doesn't have to full down to the diagonal.

I.e. there are zeros allowed on and above the diagonal.

What you get is called Gauss-Jordan elimination.

We won't look at it.



So we could implement Gaussian elimination every time we would like

to solve a linear system Ax=b. But that would be wasteful. Can we someho

"store" the work we've put in, to reuse it with another right-hand side b?

So how do you represent an elimination step as a matrix?

Reconsider matrix-matrix multiplication.

Reading 1: Rows of B specify linear
combinations of columns
of A

Reading 2: Columns of A specify linear
combinations of rows of B

So: can be represented by matrix multiplication
(from the left)

Idea: Start with an identity matrix...

...and add a single entry: add the first row *(-1/2) to the fourth.

So           has the same result as

Matrices like this are called elimination matrices.



Are elimination matrices invertible?

With enough elimination matrices, we should be able to arrive at REF...

What happens if we combine many elimination matrices like that?

Example:

Inverse has to be to undo what         did.

Demo: Elimination matrices I

"upper" row echelon form

Demo: Elimination matrices II

Summary:

- El.matrices with off-diagonal entries in a single column just "merge"

- El.matrices with off-diagonal entries in different columns merge

when multiplied by one another.

when we multiply (left-column) * (right-column)

but not the other way around.

- Inverse: Flip sign below diagonal



We could rearrange that relationship to get a factorization of A!

Lower triangular matrix

This is called the LU factorization or LU decomposition.

Demo: LU factorization



Does an LU factorization help us solve Ax = b?

So is LU/Gaussian elimination bulletproof?

Certainly: Just plug the factorization in.

a new unknown that we just invented

solvable by forward substitution

now know

solvable by backward substitution

now know

solved.

No, it's actually quite fragile. Consider this example:



So is our process just too stupid to find the LU factorization?

How are we going to fix this mess?

Nope, no LU factorization exists.

Idea: Find a nonzero entry, swap it into the top row.

Dividing by small numbers can produce very large numbers.

Floating point numbers do not work very well with numbers

whose magnitude varies a lot. So we'll try to avoid that.

(We'll talk more about floating point later in the class.)

Even better idea: Find the largest entry (by absolute value),

This idea is called "partial pivoting" or "row pivoting".

The entry that ends up in the top left is called the "pivot".

swap it into the top row.



How do we combine partial pivoting with the elimination matrices?

How do we swap rows in matrix notation?

What's the inverse of a permutation matrix?

Using so-called permutation matrices.

permutation matrix

is A with swapped  rows

Pivot first column

Eliminate first column

Pivot second column

Eliminate second column

Pivot third column

Eliminate third column

The permutation matrix itself. Makes sense if you think about it. (swap->swap)



That has made quite a mess of our LU factorization, right?

So... how do we sort out this mess?

Is this still lower triangular?

Demo: LU with Pivoting (Part  I)

No, this is actually no longer lower triangular. Oops.

Best hope: Try to get to a factorization of the form

where P is a product of permutation matrices.

Unfortunately, we can't just move all the P's to the left and

all the M's to the right, past one another. (They don't "commute.")



So... how do we sort out this mess? (cont'd)

Have:

Define:

Then:

And perhaps the best miracle of them all is that

are still lower triangular!

Demo: LU with Partial Pivoting (Part  II)



Let's talk about computational cost. What is the asymptotic cost of

multiplying two n x n matrices?

So how expensive is LU factorization?

Fortunately not.

Multiplications with permutation matrices and elimination matrices

can be carried out in           . (Why?)

So the overall cost of LU is "just"            .

for i in range(n):
   for j in range(n):
      for k in range(n):
          AB[i,j] += A[i,k]*B[k,j]

three nested for-loops
(of length n)

entries, each takes O(n) work to compute

Demo: Complexity of Mat-Mat multiplication and LU



What happens if the matrix in LU factorization is not invertible?

Are there any remaining failure scenarios for LU?

The largest below-diagonal

entry is zero (or close to it).

-> We don't have a valid pivot.

not yet done
current column

Not a problem: Column is already "upper triangular"!

Just move to next column. (But keep current row.)

End result: U upper triangular

-> Pivoted LU cannot fail.

not invertible (by assumption)

invertible (by definition of permutation matrix)

invertible (a product of elimination matrices)

not invertible (otherwise: contradiction!)



Can LU deal with non-square matrices?

Sure! There are four possibilities.

does not matter:
multiplied by 0s in U

("full" LU)

("reduced" LU)

Software will typically produce the "reduced" version.

(which is clearly more efficient!)


