

Ψ

The factor U in pivoted LU looks like it is in upper echelon form,

and most of the time it is... but this is not guaranteed.

For example, U can contain linearly dependent rows.

Demo: LU and upper echelon form, Part I

If you hit a column of all zeros, then to achieve

echelon form, you would need to "move right"

(and just keep eliminating in the same row).

Then our pivot/elimination split trick no longer

works, and L is no longer lower triangular!

(Pivoting is the problem here!)

If you are wondering: The details of why this breaks will not be on the exam.

But: We can still use the same process as pivoted LU

to compute an invertible matrix M so that

MA= U

so that U is in upper echelon form. But M cannot easily be factored into elimination and permutation matrices--and thus not easily inverted!

Nonetheless, we can obtain the "echelon factorization":

 $A = M^{-1} M$

Demo: LU and upper echelon form, Part II

Suppose we take that into account. How would we compute the rank?
Just compute echelon form. In exact arithmetic,
 "missing" row rank would appear as rows of zeros.
On a computer, we cannot hope for exact zeros.
Demo: Computing the Rank
Lesson: To find the rank computationally, we must specify
 a throshold on (for oxample) the minimum norm of
 a threshold on (for example) the minimum norm of

