
Applications of LU

(1) Solve linear equations. How?

(2) Solve a matrix equation. How?

Solve

Solve

Isn't this complicated or expensive?

(No: The factorization itself is cheap--and reusable.)

Given: Simplifying assumption:

A, X, B are square and have same size.

Example: (      is the identity matrix.)

Solved by

Can find inverse        using LU

We can solve this column-by-column:

No different than solving lots of linear systems with the same A

and lots of different right-hand side vectors b. Can reuse L and U.

Computational Cost:

LU BW+FW subst



(3) Find row echelon form

The factor U in pivoted LU looks like it is in upper echelon form,

For example, U can contain linearly dependent rows.

Demo: LU and upper echelon form, Part I

and most of the time it is... but this is not guaranteed.

not done

If you hit a column of all zeros, then to achieve

echelon form, you would need to "move right"

(and just keep eliminating in the same row).

Then our pivot/elimination split trick no longer

works, and L is no longer lower triangular!

But: We can still use the same process as pivoted LU

to compute an invertible matrix M so that

(Pivoting is the problem here!)
If you are wondering:
The details of why this
breaks will not be on
the exam.

so that U is in upper echelon form. But M cannot easily be factored into

elimination and permutation matrices--and thus not easily inverted!

Nonetheless, we can obtain the "echelon factorization":

Demo: LU and upper echelon form, Part II



(4) Find the basis of a span. How?

(5) Find the determinant of a matrix. How?

Given: linearly dependent

Want:

linearly independent

Define

Obtain

Non-zero rows of U form a basis of 

product of diagonal
entries

in echelon form



(5) We'd like to find the rank* of a matrix. Is that possible using a computer?

*rank: Number of linearly independent rows/columns

Two randomly vectors almost surely do no not point in the

same direction.

Two random vectors are almost surely not linearly dependent.

Computers do not represent numbers exactly. (in floating point)

Every floating point number:

good digits junk

Model that as: True value (small?) "random" error

In a vector:

True value

random error

Suppose we would like to test two inexact vectors for

linear dependence.

True: (linearly dependent)

Computed: (not linearly dependent)

Lesson: We cannot hope for exact equality on a computer.

Instead, we must define some sort of tolerance.



Suppose we take that into account. How would we compute the rank?

Demo: Computing the Rank

Just compute echelon form. In exact arithmetic,

 "missing" row rank would appear as rows of zeros.

On a computer, we cannot hope for exact zeros.

Lesson: To find the rank computationally, we must specify

a threshold on (for example) the minimum norm of

an echelon form row.



(6) Finding the nullspace of a matrix A

Idea: Start with echelon factorization of

echelon form

Demo: Computing the Nullspace

Echelon factorization of A is not much help:

nullspace not obvious

because these vectors "hit" the zero
columns in

So we know a few vectors x so that

But

We're looking for y so that (for each of our      )

Easy:


