
Applications of the SVD

(1) Rank-k approximation

Let's start with the simplest case: rank-1 approximation, i.e. k = 1.

Suppose we've got a "matrix of points", i.e. a 2⨉n matrix X.

Then find the reduced SVD:

Then find the rank-1 approximation:

And we know that is as small as it can be for any matrix

of this form.

break down by columns

(where u and v are the first columns of U, V)

I.e. we have found a 2-vector u and n factors in a vector v so that

the distances between the jth data point       and  the multiples

of the vector u are minimal.

Demo: Rank-1 approximation

2 only for ease of illustration
works in higher dimensions, too



So now how about rank-k approximation?

Give an example of where rank-k approximation does something useful.

(2) Computing the 2-norm

Rank-2 approximation is analogous to the rank-1 case, except

you find two vectors spanning a plane that has minimal distance

from the data points.

Rank-k approximation is analogous to the rank-1 case, except

you find k vectors spanning a plane that has minimal distance

from the data points.

Demo: Image Compression



(3) Computing the 2-norm condition number

Assume A is invertible (and square). In this case:

If A is non-square,           is still the 2-norm condition number of A.

In particular, if             , then the condition number is infinity.



(4) Principal Component Analysis ("PCA")

Have: a pile of "data"

More precisely: m 'measurements' from n 'trials'

each resulting in a real number

Data matrix: i: measurements

j: trials

How do I compute a PCA?

measurement 1

measurement 2

Want: Underlying relationships

"If measurement i changes, the other measurements change

along with it (in a computable manner) in most trials."

(1) Compute an estimate of the means:

(2) Remove the means:

(3) Compute the covariance matrix:

matrix

(an estimate of)

n-1 to obtain unbiased estimate

of covariance.



How do I compute a PCA? (cont'd)

(4) Diagonalize the (s.p.d.) covariance matrix

Observe: Large off-diagonal entries in C correspond to redundant

measurements.

Idea: Find 'independent' measurements.

(5) Transform Y to be 'independent'

Find V so that

"Explained" measurements as linear combination of

independent/"principal" components in the columns of U.

(6) Realize that this is the same calculation that led to the SVD.

All we need to do is compute an SVD of

Sums over trials, computes 'similarity' of pairs of measurements

('similarity' expressed as a dot product)



(5) Least squares for underdetermined and singular systems

Want to solve when A has a nullspace.

That is, there is a vector n≠0 so that An=0.

Suppose we have a solution x.

Then (x+αn) (for any scalar α) produces the same residual:

Demo: Solving least squares using the SVD (Part I)

The solution is not unique, which is a little sad. 

in order to get a unique solution.

We need more constraints than just minimizing the residual

Additional constraint: Minimize and simultaneously.



Now: Use the SVD to solve 

Can we use the SVD to solve the least-squares problem?

minimized when

No conditions on Set to zero.

Define So

Lastly, Solve:

This x minimizes the residual norm. It also minimizes         .

is called the pseudo-inverse of A.

solves the least-squares problem uniquely for any A.

Demo: Solving least squares using the SVD (Part II)



(6) "Total" least squares

For a given matrix A, find the vector x so that

is minimal

Easy to find:

(1) Compute SVD of A

(2) Last column of V contains an (not necessarily the) answer


