) Applications of the SVD

(1) Rank-k approximation

Let's start with the simplest case:

rank-1 approximation, i.e. k = 1.

Suppose we've got a "matrix of points”, i.e. a 2xn matrix X.
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l.e. we have found a 2-vector u and n factors in a vector v so that

the distances between the jth data point >’§, and the multiples

> - ..
oy; w of the vector u are minimal.

Demo: Rank-1 approximation




So now how about rank-k approximation?

Rank-2 approximation is analogous to the rank-1 case, except

you find two vectors spanning a plane that has minimal distance

from the data points.

Rank-k approximation is analogous to the rank-1 case, except

you find k vectors spanning a plane that has minimal distance

from the data points

Give an example of where rank-k approximation does something useful.

Demo: Image Compression

(2) Computing the 2-norm
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(3) Computing the 2-norm condition humber

Assume A is invertible (and square). In this case:
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If A is non-square, is still the 2-norm condition number of A.
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In particular, if 5,- © , then the condition number is infinity.




(4) Principal Component Analysis ("PCA")

measurement 2

/
Have: a pile of "data" -
More precisely: m 'measurements' from n 'trials’ ke
each resulting in a real number e
X.d 1= m ):",_ n measurement 1
Data matrix: X' [K.'c) = (H' /”\ | i: measurements
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j: trials

Want: Underlying relationships

"If measurement i changes, the other measurements change

along with it (in a computable manner) in most trials."

How do | compute a PCA?

(1) Compute an estimate of the means: W, = 4 Z %y
“ [}
J
(2) Remove the means: Wii = Xis—= U —L,
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s matrix Y
(3) Compute the covariance matrix: C.. = J f Voo v
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n-1 to obtain unbiased estimate

of covariance.




How do | compute a PCA? (cont'd)

Sums over trials, computes 'similarity' of pairs of measurements

(‘'similarity' expressed as a dot product)

Observe: Large off-diagonal entries in C correspond to redundant

measurements.

Idea: Find 'independent' measurements.

(4) Diagonalize the (s.p.d.) covariance matrix

Z'-neu”
T T
Aiag ortha-

g

(5) Transform Y to be 'independent’

Find V so that

= Y UZ V"

—2 "Explained" measurements as linear combination of

independent/"principal" components in the columns of U.

(6) Realize that this is the same calculation that led to the SVD.

—> All we need to do is compute an SVD of — \/




(5) Least squares for underdetermined and singular systems

Want to solve  Ax &b when A has a nullspace.

That is, there is a vector n#0 so that An=0.

Suppose we have a solution x.

Then (x+an) (for any scalar a) produces the same residual:

A(ww) : A* tahn = Ax

= || A (xran) -bll < [Ax-p 1,

Demo: Solving least squares using the SVD (Part I)

The solution is not unique, which is a little sad.

We need more constraints than just minimizing the residual

in order to get a unique solution.

Additional constraint:  Minimize | Ax-bll, and [x]), simultaneously.




Can we use the SVD to solve the |least-squares problem?

Now: Use the SVD A-(AZVT to solve As( 2,
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Lastly, /" - ERALYY Solve: = \/Z*Wb.

This X minimizes the residual norm. It also minimizes “"“L B [

A= NLYW s called the pseudo-inverse of A.

x= A'b  solves the least-squares problem uniquely for any A.

Demo: Solving least squares using the SVD (Part II)




(6) "Total" least squares

For a given matrix A, find the vector x so that

. ”,4,(”2 is minimal

. H;d/f)

Easy to find:

(1) Compute SVD of A A= A5y

(2) Last column of V contains an (not necessarily the) answer




