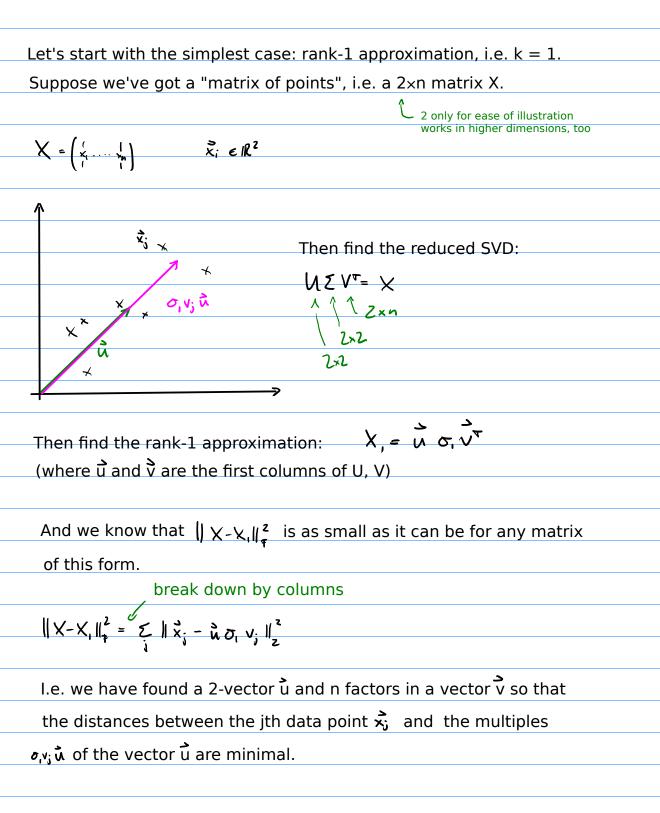
Applications of the SVD

(1) Rank-k approximation



Demo: Rank-1 approximation

So now how about rank-k approximation?

Rank-2 approximation is analogous to the rank-1 case, except you find two vectors spanning a plane that has minimal distance from the data points.

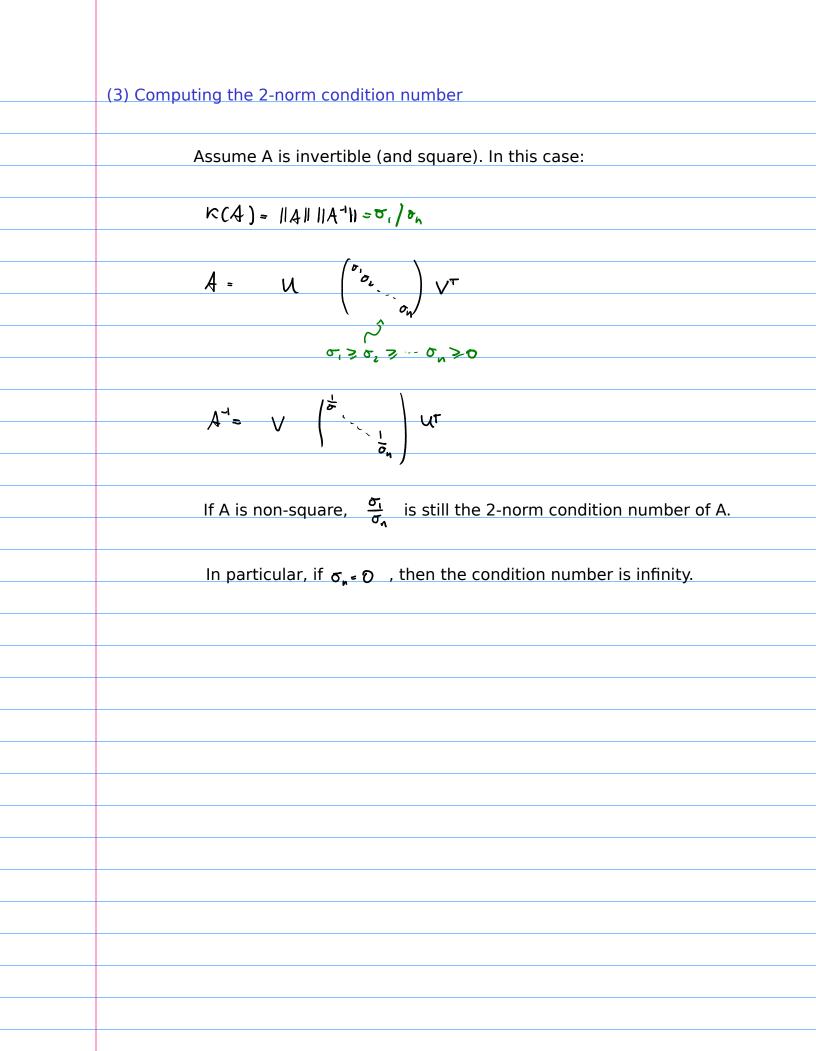
Rank-k approximation is analogous to the rank-1 case, except you find k vectors spanning a plane that has minimal distance from the data points.

Give an example of where rank-k approximation does something useful.

Demo: Image Compression

(2) Computing the 2-norm

 $||A||_2 = \sigma,$



(4) Principal Component Analysis ("PCA") measurement 2 a pile of "data" Have: More precisely: m 'measurements' from n 'trials' each resulting in a real number ×_{ij} i=1...m j=1...n measurement $X = (x_{ij}) = (||| |||) |_{V}$ i: measurements Data matrix: j: trials Want: Underlying relationships "If measurement i changes, the other measurements change along with it (in a computable manner) in most trials." How do I compute a PCA? $N_{i} = \frac{1}{n} \sum_{j} X_{ij}$ (1) Compute an estimate of the means: $y_{ij} = x_{ij} - u_i$ (2) Remove the means: hatrix Y $C_{i_{1}i_{2}} = \frac{1}{n-1} \sum_{j} Y_{i_{1}j} Y_{i_{2}j}$ (3) Compute the covariance matrix: (an estimate of) no C= (1 yyr n-1 to obtain unbiased estimate of covariance.

How do I compute a PCA?	(cont'd)
-------------------------	----------

Sums over trials, computes 'similarity' of pairs of measurements ('similarity' expressed as a dot product)

Observe: Large off-diagonal entries in C correspond to redundant

measurements.

Idea: Find 'independent' measurements.

(4) Diagonalize the (s.p.d.) covariance matrix

 $\mathcal{E}^2 = \mathcal{U} \subset \mathcal{U}^T$ $\hat{1}$ diag. orth.

(5) Transform Y to be 'independent'

Find V so that

H Y= UEV"

→ "Explained" measurements as linear combination of

independent/"principal" components in the columns of U.

(6) Realize that this is the same calculation that led to the SVD.

 \rightarrow All we need to do is compute an SVD of \bigvee_{n-1} \forall .

(5) Least squares for underdetermined and singular systems

Want to solve $A_x \neq b$ when A has a nullspace.

That is, there is a vector $n \neq 0$ so that An=0.

Suppose we have a solution x.

Then $(x+\alpha n)$ (for any scalar α) produces the same residual:

A(x+&n) = A x + a An = Ax

→ || A (xt&n) - b||2 = ||A×-bill2

Demo: Solving least squares using the SVD (Part I)

The solution is not unique, which is a little sad.

We need more constraints than just minimizing the residual

in order to get a unique solution.

Additional constraint: Minimize $\|A_{*} - b\|_{1}$ and $\|x\|_{1}$ simultaneously.

For a given matrix A, find the vector x so that
 • $I A_{\times} _2$ is minimal
• × / ₂ =)
Easy to find:
(1) Compute SVD of A : $A = \mathcal{U} \mathcal{E} \mathcal{V}^{\overline{J}}$
(2) Last column of V contains an (not necessarily the) answer