&

Solving nonlinear equations

Have: 9:&—3 IR ngﬁm

Want: % sude thar ‘Q[X)°:\,

Rewrite the problem so that we only need SM:O. (i.e. no explicit right-hand side)

3@()= ?(X)-\j

—~ Pl)=u &) q«)-0
[d

What if we know that Q is continuous and QG‘) : !(6) <@'-‘

’1]
A (

/ \ P("J and fu,) have Dpfa.u'k, Ciyus.

/ b
—

T e Mgt exi st/

P
/

Can we use this "bracket" to track down the zero?

A -

- Check signs of function values to keep zero in new bracket
- Repeat until bracket small enough (halves in length with each step)

This is called the "bisection method".

Demo: Bisection Method

Convergence Rates of Iterative Procedures

Consider the "error" in the bisection method in the kth step:

e <|hb, - aa\ <— length of the bracket

w

What's the error in the next step, relativeto e, ?

Generally, error behavior like this is called "linear convergence" ("order 1"):

e s Co e Wi B¢ Cc|

4
w1

Generally, error behavior like this is called "quadratic convergence" ("order 2"):

e n< C el w0 <

Generally, error behavior like this is called "cubic convergence" ("order 3"):

(... and so on) Which of these is fastest? cubiC

Rewrite this so that the constant stands on its own, for a general order c,; :

Ca

«n Print this, check for constant-ness to see if g-th order!

€1
k

Do not confuse this with "g-th order" convergence ~CW for a mesh width h!

Demo: Rates of Convergence

Newton's method

Suppose X, is our current guess of the zero.

\

TO

Idea:

!
Build a solvable approximate version of f using g(k,)and Jg ("q)

=,b 2

X‘\'l") (‘)('l-‘/\ Ix)

W T Ve

Find the zero of the approximate version.

e

Selue O @ (x“h)

W

DL, 0 0Gs)

i,

J')

~ u.-n z't'(’\ = X\,. - M

{)

This is called Newton's method.

Demao: Newton's method

Demo: Convergence of Newton's method

Application: How does a computer find a square root?

Name some downsides of Newton's method.

Convergence only 'near' a zero, not far from it.

("Local", but not "global" convergence)

Need the derivative f', which we may or may not have.

T Lets try and address this last issue.

Secant Method

How else could we find a line approximating a function?

Use last two guesses: ¥, awd X,

7

4

Estimate the slope of the approximating line:

be flix) -Pbs)

!

Q
-

%\M X, = Kea

Now use this estimate in Newton's method:

S‘Ml’ \‘z“’!" = Xu'm
Ft)

Py

Plx,) - e

xn"xw-\

Demo: Secant Method Demo: Convergence of the Secant Method

Solving systems of nonlinear equations

Vi U

Want to solve é%(i)g 5 g:(ll“ _3"@.‘

Let's try to carry over our 1-dimensional ideas.

Let's first get an idea of what behavior can occur.

Demo: Three quadratic functions

Based on the demo: Does bisection stand a chance?

Not really--no easy equivalent of 'bracket’.

Let's try Newton's method then. What's the linear approximation of ¥ ?

V]
ID: D(xsh)= D(t)e D'l o Blesh)
o o g)
b 3 S,
D) YEA) = PR e R« ReD)
oow
where 1, (x) - \ ') "Jacobian matrix"
] \ : .
% %

OK, now solve that for h.))
- - - alinearsystem{(surprised?)

J

’%(wﬂp §Qi) + 1® W= o ~ 'a@(ilﬁ - -f}(i)

~ AR D)

~ Kenr* ¥~]ﬂ(?k)-';P»‘(’?x)

Let's do an example of that:

/K«Zﬂ"l\

Ve by
7 7

| 2\

Jpley) -

| Lx 33)

Demo: Newton's method in n dimensions

What are the downsides of this method?

- Local convergence only

- Need the Jacobian

So how about (an n-dimensional analog of) the secant method?

Idea: Find enough information to allow reconstructing the Jacobian

Qlog) ok (L), B LW
0 A] ,(\ v,r

é‘Kn e I € 0"
L__\r____] “—r
w=10: 20 numbers 100 numbers

~N

not enough!

So carrying over the secant method to n dimensions is not easy.

It's possible, but beyond the scope of our class.

Here are two starting points to search:

- Broyden's method

- Secant updating methods

Here's one more idea: If we could figure out where the linear approximation

in Newton is 'trustworthy', would that buy us anything?

, "trust region"

N

A\

A 4
)/

stop here--never leave

> o)
“(,R/‘:hhe

truct
(9] Cruod

X

e

14

Newton step Ql - }E &) 2(&)

These are

called "trust region methods".

They can help make Newton's method a little more robust.

