

Convergence Rates of Iterative ProceduresConsider the "error" in the bisection method in the kth step:
$$e_{w} = |b_{w} - a_{w}| = e - length of the bracketWhat's the error in the next step, relative to e_{w} ? $e_{w+1} = \frac{1}{2} \cdot e_{w}$ Generally, error behavior like this is called "linear convergence" ("order 1"): $e_{w+1} \leq C \cdot e_{w}$ with $0 \leq C < 1$ Generally, error behavior like this is called "quadratic convergence" ("order 2"): $e_{w+1} \leq C \cdot e_{w}$ with $0 \leq C < 1$ Generally, error behavior like this is called "quadratic convergence" ("order 2"): $e_{w+1} \leq C \cdot e_{w}^{-1}$ with $0 \leq C < 1$ Generally, error behavior like this is called "cubic convergence" ("order 3"): $e_{w+1} \leq C \cdot e_{w}^{-1}$ with $0 \leq C < 1$ Generally, error behavior like this is called "cubic convergence" ("order 3"): $e_{w+1} \leq C \cdot e_{w}^{-1}$ with $0 \leq C < 1$ Generally, error behavior like this is called "cubic convergence" ("order 3"): $e_{w+1} \leq C \cdot e_{w}^{-1}$ with $0 \leq C < 1$ (... and so on)Which of these is fastest? whichRewrite this so that the constant stands on its own, for a general order g : $C = \frac{e_{w+1}}{e_{w}} = c_{w}$ Print this, check for constant-ness to see if q -th order!Do not confuse this with "q-th order" convergence $\sim C_{w}^{14}$ for a mesh width h!Demo: Rates of Convergence$$

Solving systems of nonlinear equations
Want to solve $\vec{f}(\vec{x}) = \vec{0}$. $f: R^* \rightarrow R^*$
Let's try to carry over our 1-dimensional ideas.
 Let's first get an idea of what behavior can occur.
Demo: Three quadratic functions
Based on the demo: Does bisection stand a chance?
Not reallyno easy equivalent of 'bracket'.
Let's try Newton's method then. What's the linear approximation of $-rac{1}{2}$?
$10: \qquad \qquad$
$nO: \qquad \hat{\vec{y}}(\vec{x}+\vec{h}) = \vec{y}(\vec{x}) + \vec{j}(\vec{k})\vec{h} \ll \vec{y}(\vec{x}+\vec{h})$
 $\left(\begin{array}{ccc} \mathbf{S}_{\mathbf{x}_{1}}^{\mathbf{x}_{1}} & \cdots & \mathbf{S}_{\mathbf{x}_{n}}^{\mathbf{x}_{n}} \end{array}\right)$
where $(x) = (x) = (x)$. "Jacobian matrix"
$\left(\begin{array}{cccc} \partial p_{n} & \dots & \partial p_{n} \\ \partial x_{n} & \dots & \partial x_{n} \end{array}\right)$
 OK now solve that for h
a linear system (surprised?)
 $\tilde{\tilde{g}}(x+h) = \tilde{g}(\tilde{x}) + \tilde{J}_{\sharp}(\tilde{x})\tilde{h} \stackrel{i}{=} \tilde{\sigma} \qquad \qquad$
 $\sim \qquad \qquad$
 $\sim \qquad \qquad$

So carrying over the secant method to n dimensions is not easy.
It's possible, but beyond the scope of our class.
Here are two starting points to search:
- Broyden's method
- Secant updating methods
Here's one more idea: If we could figure out where the linear approximation
in Newton is 'trustworthy', would that buy us anything?
/ "trust region"
Ty /
stop herenever leave the trust region
× the didet region
Newton step $\vec{x}_{\mu} \sim \vec{f}_{\mu} (\vec{x}_{\mu}) \vec{f} (\vec{x}_{\mu})$
These are called "trust region methods".
They can help make Newton's method a little more robust.