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Solving nonlinear equations

Have: 9:&—3 IR ngﬁm
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Rewrite the problem so that we only need SM:O. (i.e. no explicit right-hand side)
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What if we know that Q is continuous and QG‘) : !(6) <@'-‘
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Can we use this "bracket" to track down the zero?
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- Check signs of function values to keep zero in new bracket
- Repeat until bracket small enough (halves in length with each step)

This is called the "bisection method".

Demo: Bisection Method




Convergence Rates of Iterative Procedures

Consider the "error" in the bisection method in the kth step:

e <|hb, - aa\ <— length of the bracket
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What's the error in the next step, relativeto e, ?

Generally, error behavior like this is called "linear convergence" ("order 1"):
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Generally, error behavior like this is called "quadratic convergence" ("order 2"):
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Generally, error behavior like this is called "cubic convergence" ("order 3"):

(... and so on) Which of these is fastest? cubiC

Rewrite this so that the constant stands on its own, for a general order c,; :
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«n Print this, check for constant-ness to see if g-th order!
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Do not confuse this with "g-th order" convergence ~CW for a mesh width h!

Demo: Rates of Convergence




Newton's method

Suppose X, is our current guess of the zero.
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Idea:
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Build a solvable approximate version of f using g(k,)and Jg ("q)
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Find the zero of the approximate version.
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This is called Newton's method.

Demao: Newton's method

Demo: Convergence of Newton's method

Application: How does a computer find a square root?




Name some downsides of Newton's method.

Convergence only 'near' a zero, not far from it.

("Local", but not "global" convergence)

Need the derivative f', which we may or may not have.

T Lets try and address this last issue.

Secant Method

How else could we find a line approximating a function?

Use last two guesses: ¥, awd X,
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Estimate the slope of the approximating line:
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Now use this estimate in Newton's method:
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Demo: Secant Method Demo: Convergence of the Secant Method




Solving systems of nonlinear equations
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Want to solve é%(i)g 5 g:(ll“ _3"@.‘

Let's try to carry over our 1-dimensional ideas.

Let's first get an idea of what behavior can occur.

Demo: Three quadratic functions

Based on the demo: Does bisection stand a chance?

Not really--no easy equivalent of 'bracket’.

Let's try Newton's method then. What's the linear approximation of ¥ ?
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OK, now solve that for h. ) )
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Let's do an example of that:
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Demo: Newton's method in n dimensions

What are the downsides of this method?

- Local convergence only

- Need the Jacobian

So how about (an n-dimensional analog of) the secant method?

Idea: Find enough information to allow reconstructing the Jacobian

Qlog) ok (L), B LW
0 A ] ,(\ v,r

é‘Kn e I € 0"
L__\r____] “—r
w=10: 20 numbers 100 numbers

~N

not enough!




So carrying over the secant method to n dimensions is not easy.

It's possible, but beyond the scope of our class.

Here are two starting points to search:

- Broyden's method

- Secant updating methods

Here's one more idea: If we could figure out where the linear approximation

in Newton is 'trustworthy', would that buy us anything?

, "trust region"
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These are

called "trust region methods".

They can help make Newton's method a little more robust.




