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But: Is the norm really necessary?

Create a problem statement for "optimization".
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called the "objective function"

Find % so that D(x) assumes the smallest possible value.

What if I'm interested in the largest possible value of a function g instead?

Consider ‘3(1): _?(,()
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max of g = min of f




What could go wrong?
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How can we tell if we've got a (local) minimum in 1D? Remember calculus!

necessary condition: ,QI()() =0
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sufficient condition: X(XF 0 awd Q"(x) >0
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And in n dimensions?

/- a vector -- the "gradient"
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necessary condition: Vo= 0
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Let's steal the idea from Newton's method for equation solving.

Build a simple version of f and minimize that. Let's try in 1D first.
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Does a linear approximation (a line) help at all?

No, a linear function has no minimum.

(Other than maybe "at infinity". But that's not helpful.)

So: need at least a quadratic function.

/ from Taylor's theorem

Qorh)= D)« 90h+ S8 & P(xen)
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Now minimize that.

@»g(xﬂ) =0 ~ 9
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Does that look at all familiar?

Yes, that's just like doing solving f'(x)=0 with Newton's method.

So this gets to be called Newton's method, too.

To be precise: Newton's method for optimization.

Demo: Newton's method in 1D




Golden Section

Search

Let's try to create an analog to 'bisection’, with a type of bracket.
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Is one middle point in the bracket good enough?

No, no idea which half has the minimum. Need at least two.

Next: what condition are we going to maintain throughout?

In particular: Is "the minimum is in the bracket" feasible?

Consider Q(M(L.Q(m ., - Then we don't have a lot of information.

The minimum could be anywhere.

So we cannot promise that the minimum stays in the bracket.

=> Assume more, promise less.

What does

it mean for f to be 'unimodal'?

f is decreasing up to a point x* , then increasing.
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Reality check: Do we typically know that a function is unimodal in a bracket?

No. But we'll use the method as if we did.

So how do we maintain unimodality in each bracket?
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Where do we put the midpoints?

First idea: Thirds of [a,b].
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zoomed-in bracket: cannot reuse Dl/y.’l
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Better idea: Find points that make this possible.
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What's the convergence order of Golden Section Search?

Linear




Steepest Descent

What do we do in n dimensions?

Idea: Go in direction of steepest descent.

What does that mean mathematically?
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And how far do we go? lie vbat 3y x1)

Good question. Use a 1D optimization method to find out!

Do an example: i0(«) = 384 78t
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Demo: Steepest Descent

What's the convergence order in the example in the demo?

Linear

Can we do better by using information from the second derivative?

Of course. ;) -> Newton.




Newton's method in n dimensions
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Step 1: Write down a quadratic approximation hﬂ to fat ¥,
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Step 2: Find minimum of 7[) . To do so, take derivative and set to zero.
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Do an example: .Q(x) =334 syt

Vol = (io
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Demo: Newton's method in n dimensions




What if we don't even have one derivative, let alone two?!

Options:

- Nelder-Mead Method ("Amoeba method")
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Demo: Nelder-Mead

- Secant updating methods (for example "BFGS")
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The "trust region" idea applies in optimization, too!

(see end of Nonlinear Equations chapter)




Constrained Optimization

Modify the problem statement of optimization to accommodate a constraint.
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Find x so that p(x) assumes the smallest possible value...

...of all points where 3(&) 0.

q- K " " m: number of "constraints"
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What does a solution/minimum x*  of this problem look like?

|.e. what are some necessary conditions on x" ?

g(x) =0 (obvious ly)

All descent directions at  %x* must cause the constraints

to be violated.
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Miracle: Reduce constrained to un-constrained optimization.
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exactly the necessary conditions

for the constrained minimum of f!

Using Newton's method on 3

gets a new name:

"Sequential Quadratic Programming"




Can you do an example?

Minimize (x-17“’ fl(:,—\)l subject to &ny}

Minimizing (x.‘L)“ + 2{\5 —ll)" while ignoring the constraint.
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yields Xs T i x =l As expected, that minimum violates the

constraint.

So, find Lagrangian:
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added another rewritten to g(x)=0
dimension, the form

Lagrange multiplier

Then use an unconstrained optimization method on this,

and the minimum (in x,y) should satisfy the constraint.
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Demo: Sequential Quadratic Programming




