Numerical Analysis (CS 450) Worksheet 8

Objectives: (1) understand the geometric intuition behind least-squares problems, (2) apply the normal equations method and know its drawbacks,

Problem 1: Derive the normal equations

Consider $\varphi(x) = ||r(x)||_2^2 = ||Ax - b||^2$. Expand φ and take the gradient in x to derive the normal equations.

Problem 2: Properties of linear least squares problems

	Answer	
What is more problematic in an $m \times n$ least squares system with $m > n$: if the rows of A are linearly dependent or the columns?	Rows	Columns
When solving the linear least squares problem $Ax \cong b$, the residual $r = 0$ if and only if $b \notin \operatorname{span}(A)$.	True	False
When solving the linear least squares problem $Ax \cong b$, if the residual $r = 0$, then the solution is unique.	True	False

Problem 3: Usage of QR

- (a) If A is an $m \times n$ matrix with m > n and A = QR is a QR factorization, what are the shapes of Q and R?
- (b) What are the shapes of Q and R in the *reduced* QR factorization?
- (c) Suppose now that n = m (i.e. A is square), and that you have a QR decomposition A = QR of A. Write an algorithm to solve Ax = b. You may call the function back_substitute(M, b), where M is upper triangular.