Objectives: (1) Use the Householder method to compute QR (2) Use the Givens method to compute QR (3) Know properties and applications of the SVD

Problem 1: Methods for computing QR

- (a) What condition must the vector \mathbf{w} satisfy for $\mathbf{I} \mathbf{w}\mathbf{w}^T$ to be orthonormal?
- (b) What situation will you encounter if you apply the QR factorization to a singular matrix?
- (c) Suppose you want to solve the least squares problem $\mathbf{Ax} \cong \mathbf{b}$ and you are give an orthonormal \mathbf{Q} matrix so that \mathbf{QA} is diagonal. How would you solve $\mathbf{Ax} \cong \mathbf{b}$ in this situation?

Problem 2: Properties of the SVD

- (a) If **A** is $m \times n$, what are the dimensions of the matrices in $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ and what properties do each have?
- (b) What assumptions do we need to make about the matrix A to make sure that its SVD exists?
- (c) How do the columns of U relate to A? How about the columns of V? How about each σ_i ?
- (d) Assume $\sigma_i \neq 0$ for all *i* and all matrices to be of size $n \times n$. Write the formula

$$\mathbf{x} = \sum_{i=1}^{n} \mathbf{v}_i \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i}$$

using the matrices **U** and **V**, where \mathbf{u}_i are the columns of **U**, and \mathbf{v}_i are the columns of **V**.