Objectives: (1) Know properties and applications of the SVD (2) Understand conditioning of eigenvalue problems (3) Know effect of matrix transformations on eigenvalues

Problem 1: Properties of the SVD

- (a) If **A** is $m \times n$, what are the dimensions of the matrices in $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ and what properties do each have?
- (b) What assumptions do we need to make about the matrix A to make sure that its SVD exists?
- (c) How do the columns of U relate to A? How about the columns of V?
- (d) Assume $\sigma_i \neq 0$ for all *i* and all matrices to be of size $n \times n$. Write the formula

$$\mathbf{x} = \sum_{i=1}^{n} \mathbf{v}_i \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i}$$

using the matrices $\mathbf{U}, \boldsymbol{\Sigma}$ and \mathbf{V} , where \mathbf{u}_i are the columns of \mathbf{U} , and \mathbf{v}_i are the columns of \mathbf{V} .

Problem 2: Eigenvalue problem: properties and conditioning

- (a) A 3×3 matrix has 2 distinct eigenvalues. Is it necessarily defective?
- (b) Why is the eigenvalue problem well-conditioned for symmetric matrices?
- (c) Suppose $\lambda = 2$ is an eigenvalue of A. Name an eigenvalue of $(A^2 2)^{-1}$.