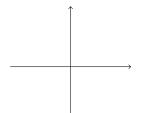
Objectives: (1) When does fixed point iteration converge? (2) When does it converge linearly? When quadratically? (3) When does Newton's method converge, and how quickly?


Problem 1: Fixed point iteration

- (a) Suppose ||e₇|| = 2 ⋅ 10⁻² and ||e₈|| = 10⁻².
 How large (approximately) would you expect ||e₉|| to be if convergence is (now) asymptotic and quadratic?
- (b) How large would you expect $||e_9||$ to be if convergence is asymptotic and linear?
- (c) Suppose a fixed point iteration with iteration function g converges linearly. What determines the constant C in $||e_{k+1}|| \approx C ||e_k||$?

Problem 2: Newton's method

(a) Think of a function where Newton's method will not converge. Draw a sketch below. Also mark your initial guess for Newton.

Hint: $f'(x_k)$ is in the denominator. What type of number is bad in a denominator?

(b) Let x_k and x_{k-1} be the current and previous iterates in the Newton and secant methods. Write down the estimated slope near x_k used in each method.