
Markov Chain Monte Carlo on the GPU

Final Project, High Performance Computing

Alex Kaiser
Courant Institute of Mathematical Sciences, New York University

December 27, 2012

1 Introduction

The goal of this project is to implement a Markov chain Monte Carlo (MCMC) sampling algo-
rithm called the Stretch Move for GPU hardware. The algorithm was developed at the Courant
Institute in 2010 by Jonathan Goodman and Jonathan Weare [2]. It is effective at producing high
quality samples and efficient in terms of samples produced per second. Theoretically, the algorithm
parallelizes completely with relatively minor communication. I would like to investigate whether
running in parallel on GPU hardware is practical, how the real performance scales with additional
parallelism and whether the ultimate speedup is enough for applications users.

If successful, this code will show that a highly parallel implementation of this algorithm is effective.
If this new implementation really is superior, maybe it will be adopted by applications scientists.
Astrophysicists using this and other MCMC samplers report running for multiple days. Perhaps we
can take 4 days to one, or one day to a few hours for some applications user. If even one scientist
reports this kind of speedup on a real problem, this project is a success.

If the project fails completely, it will suggest that this hardware is not effective for this algorithm.
Or at least that a much more detailed investigation is required to find how to implement it effectively.

To state the problem formally, suppose one has a continuous, multivariate random variable X with
probability density function (PDF) proportional to a function f , where

f : Rn → [0,∞)

and ∫
Rn

f(x) dx <∞.

That is, the integral of f need not be known, but must be convergent over the whole space. Ad-
ditionally, it is known how to evaluate f , perhaps in closed form or perhaps only through some
complicated numerical algorithm. For the duration of this paper, we only consider dimensions N
greater than or equal to two. The central question is this: Given f , how can we produce numbers,
or samples, that behave approximately according to the distribution of X? What algorithm can be
used to produce these samples?

Alex Kaiser 2

These samplers have many applications. One common computation is to compute the expected
value of something. Let x1 . . . xK be samples from the distribution. Then an estimator for the
expected value is given

E[φ(X)] ≈ 1
K

K∑
i=1

φ(xi).

Samplers can also be used to compute deterministic integrals, usually in high dimensions, by phras-
ing them as an expectation. ∫

φ(x)f(x) dx = E[φ(X)] ≈ 1
K

K∑
i=1

φ(xi)

There are additional applications to inference problems and running simulations in statistical
physics.

2 MCMC Methods

The algorithms we will investigate are called Markov chain Monte Carlo, or MCMC, methods. Here
we summarize some relevant definitions and concepts, discuss Metropolis, the oldest and most used
MCMC sampler, and introduce the Stretch Move algorithm.

2.1 Random Walks, Markov Chains and Detailed Balance

(These descriptions are loosely based on those of Kalos and Whitlock [3].)

An MCMC method generates samples by moving in a random walk, that is some sequence X1 . . . Xt

for which the subsequent samples are determined according to stochastic dynamics which depend
on the algorithm.

We say that a sequence of samples X1 . . . Xk has the Markov property if

P (Xt+1 = x|Xt . . . X1) = P (Xt+1 = x|Xt).

That is, the conditional distribution of Xt+1 given all previous elements of the sequence is inde-
pendent of all but the previous state. A random walk with the Markov property is called a Markov
chain.

A Markov chain is said to be irreducible if any state in the chain can reach any other in a finite
number of steps. Informally, there are no “islands” of probability such that the chain cannot get
to the other area. A Markov chain is called aperiodic if for any initial state, it is possible to return
in an irregular number of times. Formally, the gcd of the number of steps in which the chain can
return must be one. For example, consider a random walk on the integers that moved either left
or right with probability 1/2 from the current state. If the initial state X0 = 0 would not be able
to return to any even state in a any odd number of steps, so the chain is not aperiodic. If the ran-
dom walk had some probability 1/3 of moving left, right or staying still, it would be aperiodic since
the state can return in any number of moves. We call an irreducible, aperiodic Markov chain ergodic.

Another important property convergence is called detailed balance. Suppose that the next value
in the random walk is determined by stochastic dynamics K(Y |X), where K is a conditional

Alex Kaiser 3

probability density function of Y given the current state X. The detailed balance condition is
specified

K(X|Y)f(Y) = K(Y |X)f(X)

Note that for a continuous distribution the quantities involved are not actually probabilities, but
values of the PDF at a specific point.

For proofs of convergence of MCMC methods, ergodicity and detailed balance are used to prove
the existence and uniqueness of the limiting distribution. There is much more subtlety in these
properties, which is beyond the scope of this report. What is important for general MCMC meth-
ods is that these properties are typically required to prove the correct convergence of the random
walk.

Also, since the convergence is only asymptotic, depending on the distribution to sample it may
be necessary to run a “burn-in.” That is, the first few steps of iteration are thrown out since the
initial distribution is not necessarily a valid sample of the distribution.

2.2 Metropolis

The standard algorithm for this type of sampling problem is called the Metropolis algorithm, intro-
duced by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953 [4]. A single step of the
algorithm works as follows:

• Let Xt be the sample at time t.

• Propose a move Y by sampling from a proposal distribution T (Y |X).

• Evaluate a likelihood function for the move

q(Y |Xt) =
T (Xt|Y)f(Y)
T (Y |Xt)f(Xt)

,

or in the uniform case the T cancel

q(Y |Xt) =
f(Y)
f(Xt)

.

• If q(Y |Xt) > 1, accept. Otherwise, accept with probability q.

• If we accept Xt+1 = Y , else Xt+1 = Xt.

The final two steps can be phrased alternately as follows: Define a(Y |X) = min(1, q(Y |X)), sample
p ∼ U(0, 1), accept if a(X|Y) > p. Most references use this notation.

Heuristically, the algorithm works by taking an arbitrary move near the current point. If the PDF
has greater value at that point, then we always move there. If the PDF has a smaller value, then
we accept with probability dependent on how much less likely.

The algorithm generates a sequence that is ergodic, and it satisfies detailed balance. The proposal
distribution at time t+ 1 depends only on the previous state, not any prior to that, and the single
random number generated for the acceptance step is independent of everything else. Then the

Alex Kaiser 4

sequence is indeed a Markov chain. Also, The proposal distribution T must be made such that the
chain is irreducible. If the support of the PDF is connected, then a uniform T satisfies this. But if
the PDF is supported only on two or more disjoint sets, the T must be designed accordingly. The
algorithm includes a rejection step, and thus the dynamics it specifies are aperiodic because the
distribution can return to any current state through a rejection. Then with a properly designed T
the sequence generated is ergodic.

To see that the distribution satisfies detailed balance, let X and Y be arbitrary states. The
dynamics are a(Y |X) T (Y |X), so the detailed balance condition for this algorithm is

a(Y |X) T (Y |X) f(X) = a(X|Y) T (X|Y) f(Y).

Suppose first that q(X|Y) > 1, so q(Y |X) < 1 and a(Y |X) = q(Y |X). Then

a(Y |X) T (Y |X) f(X) =
T (X|Y)f(Y)
T (Y |X)f(X)

T (Y |X) f(X)

= T (X|Y)f(Y)
= a(X|Y) T (X|Y) f(Y),

and similarly for the q(X|Y) < 1 case. Thus, detailed balance is satisfied. The full proof of the
convergence of this method requires properties of ergodic Markov chains and conditions implied by
detailed balance, but is beyond the scope of this report.

One advantage of this method is that it does not require knowledge of normalization constants,
which will be discussed further in the descriptions of individual algorithms. Because of the form of
the ratio, any constant will cancel.

This method, however, has limitations. Ideally, the samples generated would be independent, but
since they are generated in a chain, they are correlated. This can be measured by the autocorrelation
time, denoted τ , of the sequence [2]. This is defined as

τ =
∞∑

t=−∞

C(t)
C(0)

where C(t) is the lag t autocovariance, defined as

C(t) = lim
s→∞

Cov(Xt+s, Xs).

The number of effective independent samples is given by M/τ , where M is the total number of
samples. Metropolis tends to have high τ , and this is a major disadvantage of the method.

Another disadvantage is that the algorithm is inherently serial. If evaluating the PDF is very time
consuming, it may be possible to parallelize inside that routine, but that is about the limit.

The third major disadvantage is that the algorithm is sensitive to skewed, or anisotropic, distribu-
tions. Consider a two dimensional Gaussian with PDF given

f(~x) ∝ exp
(
−(x1 − x2)2

2ε
− (x1 + x2)2

2

)
,

Alex Kaiser 5

taken from [2] and displayed in figure 1. Despite that this would be easily sampled by other methods
and is only two dimensional, Metropolis has difficulty if the standard uniform proposal distribution
is used. To see this, note that if moving in the (1,1) direction the steps would need to be of order one
to sample the distribution in a reasonable number of moves. However, steps in the (-1,1) direction
would need to be much smaller, because a large step moves to a region with low probability and is
likely to be rejected.

Figure 1: An anisotropic Gaussian distribution

2.3 The Algorithm: Stretch Move

Fortunately, there is an algorithm that addresses all of these concerns. This algorithm is called the
Stretch Move, and was developed at the Courant Institute by Jonathan Goodman and Jonathan
Weare in 2010, see [2]. The algorithm has a similar structure to Metropolis, and still uses a proposal
and an accept/reject step. In this algorithm, we use a group or ensemble of sequences, also called
walkers, since each one is proceeding in its own random walk. Each walker on each iteration of
the algorithm represents a valid sample of the distribution. Thus, on each iteration the algorithm
generates multiple samples. To update one walker, another walker is randomly selected from the
complementary ensemble. A move is then proposed alone a line between the current walker k and
the complementary walker j according to the distribution

Y = X(j) + z(X(k)−X(j))

and then accepted or rejected. This generally gives better autocorrelation time as compared to
other MCMC methods.

Alex Kaiser 6

The algorithm is efficient. It requires a comparable amount of arithmetic to update a single walker
to other MCMC methods. Crucially, the algorithm can be parallelized. To accomplish this, split
the walkers into two groups Xred, Xblack. If there are K total walkers, then the algorithm allows
precisely K/2 updates to be performed in parallel. This splitting allows the detailed balance con-
dition to remain satisfied when the walkers are updated in parallel.

The algorithm is affine invariant, which means that for A, a linear transformation, and vector
b, sampling a PDF g(x) = Af(x) + b is equivalent to sampling f then applying A and b after.
Heuristically, this means that the algorithm is not sensitive to skewed distributions.

A description of a single iteration of the algorithm to updated one walker is as follows. All of
the walkers in each group can be updated completely in parallel. The algorithm uses an auxiliary
random variable Z described in 2.3.1.

• To compute Xred(k, t+ 1)

• Randomly select a walker from the complementary ensemble Xblack(j)

• Sample z ∼ g(Z).

• Compute a proposed move Y

Y = Xblack(j) + z(Xred(k, t)−Xblack(j))

• Compute a likelihood

q = zN−1 f(Y)
f(Xred(k, t))

• If q > 1, accept. Otherwise, accept with probability q.

• If accept Xred(k, t+ 1) = Y , else Xred(k, t+ 1) = Xred(k, t).

The additional factor of zN−1 in the likelihood ratio is to ensure that detailed balance is satisfied.

2.3.1 The Random Variable Z

The algorithm requires an auxiliary random variable Z PDF g(z), which must satisfy g(1/z) =
(1/z)g(z). This distribution is usually g(z) = 1/

√
2z on (1/2, 2), and this is the only distribution

used in this project and paper.

To generate the samples of the random variable Z, we will use the standard technique of inverting
CDFs. Let a = 1/2. To get the PDF of g(z) we have

∫ 2
1/2 z

−1/2 dz =
√

2 so

g(z) =

1√
2z

: z ∈ (1/2, 2)

0 : else

The CDF is given

FZ(z) =

0 : z ≤ 1/2√

2z − 1 : z ∈ (1/2, 2)
1 : 2 ≤ z

Alex Kaiser 7

Let X ∼ U(0, 1), then use the standard relationship of the CDFs, FZ(z) = FX(h−1(z)) to find the
appropriate transformation. Expand each of the CDFs by their definition to find h.

√
2z − 1 = h−1(z)

so
h(x) =

1
2
x2 + x+

1
2

Then to sample Z, sample X and return h(x).

3 Related software

One related package is called emcee: the MCMC hammer [1]. This package implements the Stretch
Move in Python and has been successfully used in inference problems. The algorithm is sufficiently
new that there are not many libraries that use it, so if a significant speedup would have real impact.
It is possible that this code will be included in emcee in the future, which would hopefully give the
code a quick audience.

The random number generator used is ranluxcl [5], and the kernel requires precisely three random
numbers per update of a single walker.

4 GPU Implementation and goals

The GPU implementation is written in OpenCL. Effort has been made to keep the code concise
and straightforward. The kernel evaluates all the moves for a group, so a new kernel is launched
twice for each iteration. The group of walkers is brought back to the host on each iteration for use
in histograms or other computations.

The main goal is to be able to make very many samples quickly. More specifically, the goal is to see
whether the code is much faster than emcee, in which case it will be useful for applications users
of that software.

At all sizes, latency of transferring the samples to the host should be significant, and is likely the
highest cost of the algorithm besides evaluating the PDF. Also, the since hundreds or thousands
of kernels will need to be launched, at all levels the kernel launch time will be significant. If the
number of walkers is very high such that not that many iterations are required, this cost will be
reduced. If this number of walkers is small and many iterations are required, it’s possible that this
becomes the dominant cost of the computation.

At upper limits, the kernel will use very many walkers and will be limited by GPU memory size.
For larger test problems allocation did fail, and tests have been run up to sizes at the edge of failure.

For smaller problems that do not function well with very many walkers, other approaches (most
likely serial) may be superior, since the latency with launching and reading samples back to the
host is high.

Alex Kaiser 8

Throughout, we will use two simple test problems. The first is a Gaussian debug problem specified
by

f(~x) ∝ exp

(
N∑

i=0

(xi+1 − xi)2
)

where x0 = xN+1 = 0. The second is the same problem but with a restriction that each component
is nonnegative. That is

f(~x) ∝ exp

(
N∑

i=0

(xi+1 − xi)2
)
r(~x)

where r(~x) = 1 if all components are nonnegative and zero otherwise.

4.1 Expectations

I expect the performance to suffer somewhat compared to the serial version from the overhead of
memory transfer. Once the baseline is in place, the performance of the sampler kernel in samples
per second should scale roughly linearly as the number of work items increases. The two evaluations
of the PDF are likely the most expensive part of the computation, and being able to execute them
fully in parallel should give the code strong scaling. For a distribution for which the PDF takes
a consistent amount of time to evaluate, the algorithm should be load balanced well. Because of
latency issues in reading various quantities, especially the opposing walker from global, and the
further benefits of latency hiding, more work items should make for better performance. This scal-
ing will likely stop once all the latency is hidden, that is when the various schedulers and pipelines
are filling the entire GPU.

Another expectation is that performance will slow slightly because of burn-in. The burn-in time
usually thought of as a fixed number of iterations, regardless of the total number of walkers used.
Thus the parallelism does not save any time on this step. However, in measurements of total time,
the burn in is should not be that significant. In particular, there is no communication with the
CPU since the samples are thrown out, copying them is a main cost of the algorithm.

4.2 Performance Measurements and tuning

All tests in this section were run on an Nvidia GeForce GTX 590.

One performance consideration is whether to use local memory for the walker that is moving and
the proposal, or to declare them private and take the risk that the private array will move to global.
To local versus private evaluate this, we will look performance of both versions on a ten dimensional
Gaussian test problem. Figure 2 shows that the performance is generally slightly better with local,
so we will use this version of the code.

Alex Kaiser 9

Figure 2: Scaling on local and private memory

Alex Kaiser 10

An important check is that these samples are right, so a histogram on the final version is shown in
figure 3. A histogram of the Gaussian with restriction in 20 dimensions is shown in 4, computed at
a sample rate of 11.3 m. samples/s. on the kernel and 8.0 m. samples/s. in total time. Disparity
in the kernel versus total performance is higher, most likely since the code is doing more processing.

Figure 3: Correct histogram of 10D Gaussian debug problem. Note that the histogram and the
true PDF are indistinguishable.

Alex Kaiser 11

Figure 4: Histogram of 20D Gaussian with restriction.

Alex Kaiser 12

Figure 5 shows the a performance scaling curve for the 20 dimensional Gaussian. The scaling is
roughly linear as expected. Note that a baseline value for this plot with 1024 work-items is 5.1 m.
samples/s. on the kernel and 3.3 m. samples/s. in total time. The burn-in time does not appear to
be a large factor and appears to be consistent, because the total time is a roughly constant amount
lower than the kernel time. One high cost is that a new kernel must be launched two times for
each iteration. To create the full barrier to global memory, a new kernel must be launched. When
running hundreds or thousands of iterations, this seems to be a large cost.

Figure 5: Performance scaling on a 20D Gaussian.

Alex Kaiser 13

If the dimension is large, and the number of walkers is also very large, then the algorithm has
problems converging to the correct distribution. It is not clear what is happening, or why this
convergence is so poor. More analysis, both numerical and theoretical, is needed to understand
this behavior. This error on a 50 dimensional Gaussian is shown in figure 6. Performance for this
test is 5.56 m. samples/s. kernel time, and 4.74 m. samples/s. total.

Figure 6: Errors on high dimensional problems with very many walkers.

Alex Kaiser 14

One final aside on performance, a previous version used a barrier within the kernel, rather than
a restart. This creates a race condition on read of the walkers — the algorithm may read an old
walker because the write has not fully gone through. This race condition was fixed, but fixing had
a dramatic effect on overall performance. Performance on a 10 dimensional Gaussian is shown in
figure 7, and is really much faster than synchronizing by launching a new kernel. If there is a more
efficient method of ensuring correct reads of the data, then this would be of serious benefit. Even
an expensive and complicated method with atomics may be better than launching a new kernel
and is worth looking into for the future.

Figure 7: Performance scaling with data race. Performance is significantly better than with correct
synchronization, so more sophisticated synchronization strategies are worth pursuing.

5 Conclusions and Further Work

This code has shown that a GPU implementation of the Stretch Move algorithm sometimes per-
forms well on the GPU. Reasonable and significant improvements have been seen compared to the
implementation running serially.

The next thing to test is harder problems. In particular, I plan on contacting scientists who have
cited use of the algorithm. It will be very instructive to see whether the code is effective on real
inference problems. I would like to further analyze the success and failures in using very many
walkers, especially on high dimensional problems. It would also be useful to do a more sophisti-
cated evaluation of the quality of the random numbers from ranluxcl.

In an applications use, a more sophisticated approach might use the samples on the GPU. If the
computation of the samples is some sort of reduction operation, then getting the result back to the
CPU could be much faster than getting the samples back every iteration.

Alex Kaiser 15

One additional goal is to make the code more user friendly. As is, the code requires modification
of many files and there are many constants. Ideally the code would require less tinkering for a user
who is not familiar with OpenCL.

References

[1] Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J. emcee: The MCMC
Hammer. ArXiv e-prints (Feb. 2012).

[2] Goodman, J., and Weare, J. Ensemble samplers with affine invariance. Commun. Appl.
Math. Comput. Sci. 5 (2010), 65–80.

[3] Kalos, M. H., and Whitlock, P. A. Monte Carlo methods. Vol. 1: basics. Wiley-
Interscience, New York, NY, USA, 1986.

[4] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,
E. Equation of State Calculations by Fast Computing Machines. Journal of Chemical Physics
21 (June 1953), 1087–1092.

[5] Nikolaisen, I. U. ranluxcl v1.3.1, 2011. https://bitbucket.org/ivarun/ranluxcl/.

Alex Kaiser 16

6 Appendix - Code

6.1 Building

The included makefile should build the code on any generic Linux or OSX system using GNU
compilers. Tests were run on the Rice University system “Box” using Nvidia GPUs. Debugging
and other test runs also has been run and tested on a stock Apple laptop on the CPU.

6.2 Options

The following constants can be modified in stretch move main.c. Various parameters that define
the output and flow of the program are set using definitions, and parameters for the sampling itself
are set in the main routine of the code.

Constant Purpose

(definitions)
DEBUG Print a few samples to eyeball
OUTPUT FULL DATA Output a file containing the full generated sequence of samples
OUTPUT HISTOGRAMS Compute histograms for the samples
GNU PLOT HISTOGRAMS Write a gnuplot file for the histograms
MATLAB HISTOGRAMS Write a matlab file for the histograms to be read

by the included script plot hist from files.m
NONNEGATIVE BOX Start all the components of the walkers with nonnegative values
RUN ACOR Run the acor module. Currently unreliable, use with caution
PDF NUMBER Which PDF to use. See below.

(Declared in “main”)
M Number of steps to run
N Dimension of the problem and the walkers
K over two Number of walkers in each group
burn num Destroy with this many moves before using samples
num to save Number of samples to save
indices to save host Indices of the components to process

This is an array of length num to save

6.3 Arranging Your PDF to sample

The probability density functions to sample are specified in the file stretch move.cl. Before the
kernel code begins, there is a function with the following header:

float pdf(local float *x)

The body of this function depends on a constant PDF NUMBER, defined in stretch move main.c.
Add an additional if clause and place the code to evaluate the PDF here. Two simple examples are
included in the file. If the constant is unchanged, the code defaults to the Gaussian debug problem.
One consequence of this is that the PDF must be a “pure function” of the walker X, that is, its
result may depend only on the input. As implemented, for a dimension N PDF, the function must
be

f : Rn → R.

Alex Kaiser 17

If the PDF to evaluate requires observations or other previously computed data, the function header
for the PDF will need to be modified accordingly and data will need to be read on the CPU and
passed in. Also, since OpenCL kernels do not permit recursion, the code cannot be recursive.
Otherwise, an arbitrarily complicated PDF may be supplied.

Two other points: The algorithm has a feature that it does not function correctly or converge if
given a sample with zero probability. This means that the initial walkers must be initialized so
they have nonzero probability. Second, the algorithm is fails to work if all walkers are identically
zero, thus they must be initialized to some other value.

6.4 Running

Run the executable stretch move main. The program takes no command line inputs, all changes
the user may wish to make are in the source files.

If Matlab histograms are output, then plot hist from files.m can plot them. If gnuplot his-
tograms are output, then running gnuplot on the data files will produce histograms, the output is
already formatted. If a full sequence of samples is output, then plot data.m will compute and plot
histograms.

6.5 Getting the code

The code is currently in my private repository on Forge. I will release publicly (probably on github,
maybe as part of emcee) upon further investigation and testing.

