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Sampling

• Problem: given a multidimensional random variable X , want
to generate samples of this random variable

• We know how to evaluate the probability density function of
fX up to a constant

• Ex: X ∼ N(µ,Σ), an N dimensional Gaussian

fX (~x) = α exp

(
−1

2
(~x − µ)tΣ−1(~x − µ)

)
• Here, α = (2π)−N/2 det(Σ)−1/2. In general this normalization

factor is a nuisance to compute.

• Need an algorithm to produce these samples



What is this for?

• Estimating expected values

• Let x1 . . . xK be samples from the distribution. Then an
estimator for the expected value is given

E [φ(X )] ≈ 1

K

K∑
i=1

φ(xi )

• Integrate something, usually in high dimensions

• This can be phrased as an expected value∫
φ(x)fX (x) dx = E [φ(X )] ≈ 1

K

K∑
i=1

φ(xi )

• Parameter estimation

• Simulations in statistical mechanics



Metropolis Algorithm

• The standard algorithm is the Metropolis Algorithm

• Design a Markov chain with relatively simple dynamics
(explained shortly)

• Stationary distribution of the Markov chain is the distribution
we want to sample

• Create a random walk with the Markov chain, the values of
the walk are samples of the distribution

• Don’t need to know the normalization factor

• This type of sampler is called a Markov chain Monte Carlo
sampler (MCMC)



Metropolis Algorithm

• Let Xt be the sample (position of the Markov chain) at time t

• Propose a move Y by sampling from a proposal distribution T

• The distribution T is something easy to sample (i.e. uniform)
• For complicated distributions, lots of work to define a good T

• Evaluate a likelihood function for the move

q(Y |Xt) =
T (Xt |Y )fX (Y )

T (Y |Xt)fX (Xt)

• In case of uniform T , this is fX (Y )/fX (Xt)

• If q(Y |Xt) > 1, accept. Otherwise, accept with probability q.

• If we accept Xt+1 = Y , else Xt+1 = Xt .



Problems with metropolis

• Correlation. Following samples are correlated with the
previous sample.

• Ideally samples would be independent, but the next sample is
moved directly from the last

• To quantify this, compute the autocorrelation time τ , a
measure of the correlation of the sequence with itself.

• If M total samples are drawn, then the effective number of
independent samples is M/τ

• Serial. There is very little parallelism in this algorithm.

• Astrophysics researchers using these methods for inference
report running for days.



Skewed distributions

p(~x) ∝ exp

(
−(x1 − x2)2

2ε
− (x1 + x2)2

2

)



Stretch Move

• Alternative MCMC method developed at Courant by
Goodman and Weare in 2010

• Similar structure to Metropolis

• Still has an accept/reject step with a likelihood calculation

• Use an ensemble of walkers

• Generate a multiple samples on each iteration, each walker is a
valid sample

• Develop an update rule that allows the walkers to be updated
in parallel

• Source for some figures and formulas: J. Goodman and J. Weare,

Ensemble Samplers with Affine Invariance, Communications in Applied

Mathematics and Computational Science, v. 5, 2010.



Stretch Move - Setup

• Split the walkers into two groups Xred , Xblack

• To make proofs work all cannot be updated at once

• To update a walker, randomly select a walker from the other
group, then sample on a line between the two walkers.

• This gives affine invariance, algorithm is not sensitive to
skewed distributions

• Each group can be updated in parallel. K walkers gives
precisely K/2 chunks of work that can be computed in
parallel.

• Algorithm will require an auxiliary random variable z ∼ g(Z )

• Distribution must satisfy g(1/z) = (1/z)g(z)
• Usually g(z) = 1/

√
2z on (1/2, 2)

• Picked this way to make proofs work
• This is easy to sample by inverting CDFs. Becomes a

quadratic function of a U(0, 1) random variable.



Stretch Move - Algorithm

• Want to compute Xred(k , t + 1)

• Randomly select a walker from the complementary ensemble
Xblack(j)

• Sample z ∼ g(Z )

• Compute a proposed move Y

Y = Xblack(j) + z(Xred(k, t)− Xblack(j))

• Compute a likelihood

q = zN−1fX (Y )/fX (Xred(k , t))

• If q > 1, accept. Otherwise, accept with probability q.

• If accept Xred(k, t + 1) = Y , else Xred(k, t + 1) = Xred(k , t).



Stretch Move on the GPU

• Each work-item owns two walkers, one from each group,
whole group can be updated in parallel

• Use as many walkers as can be stored in memory, up to the
twice the maximum number of work-items the hardware can
handle

• Barrier required before updating complementary ensemble,
updated walkers need to be read

• No race conditions - clear ownership, each work-item writes to
two and only two walkers

• If the PDF takes a consistent amount of time to evaluate, this
is almost perfectly load balanced

• Use as many walkers as can be stored in memory, up to the
twice the maximum number of work-items the hardware can
handle



Stretch Move - performance

• Almost perfect linear scaling with the number of work-items.



Demo

• Looking at pre-made histograms is only so much fun. Let’s
make some now.
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