
Agent-Based Economic Models in OpenCL

Dan Greenwald and Kevin Mullin ∗

December 28, 2012

1 Introduction

Our project is to simulate the macroeconomic behavior of an economy with incomplete asset

markets using OpenCL on a GPU. A complete description of the environment and the algorithm

that we use can be found in Sections 4 through 6. In general, the model is based on that of

Krusell and Smith (1998) adapted so that a risk-free bond is traded, and there is no capital in

the economy.

Overall we were able to obtain dramatic gains from parallelization in general, but also from

moving from CPU to GPU computation. These gains were more dramatic for the solution algo-

rithm than for the simulation algorithm, and were quite small for some scales, but showed speedup

of nearly 1000 times for scales with large solution grids.

Our code is available on github under the repository

git@github.com:dgreenwald/hpc12-fp-dlg340-kpm303.git

and is intended to be free for anyone to use.

The write-up is organized as follows. The rest of Section 1 contains a summary of the project,

notes on the relevant scale of the problem, instructions for running, and the division of labor.

Section 2 contains the economic background for our problem. Section 3 describes the mathematical

model we will be using. Sections 4 through 6 describe the computational algorithm. Section 7

contains the timing results. We conclude in Section 8.

∗Dan Greenwald can be reached at daniel.greenwald@nyu.edu. We thank Andreas Kloeckner and Mar-

sha Berger for doing a great job teaching such useful material, and especially Prof. Kloeckner for taking

the time to debug the code when we were completely stuck.

1



1.1 Summary of Project

The problem contains two major components. The first is to solve for the agent’s optimal con-

sumption policy given his or her current state. This involves interating a functional operation on

function approximations defined on a grid. Since the calculations for each gridpoint are indepen-

dent, the algorithm is highly parallelizable. Each iteration involves solving an equation derived

from the model’s optimality conditions. This can be done without resorting to use of a nonlinear

equation solver by use of the “endogenous grid method.” The main computational challenge is to

move back from the endogenous grid to the original grid, because it involves interpolation on an

unknown grid, of which only a portion is held by each work-group.

The second component is to use the optimal policies to simulate the economy for a large num-

ber of agents over a large number of periods, in order to obtain a simulation of macroeconomic

behavior. This type of simulation could be used to perform experiments, like studying the effects

of a policy change. Alternatively, this type of simulation could be used for parameter estimation,

which would seek to minimize the distance between simulated moments of macroeconomic vari-

ables and their counterparts in the actual data. The main computational challenge in this step is

to set bond prices exactly so that markets clear (i.e. so that total saving equals total borrowing),

which involves simulating the economy in each period for various guesses of the bond price until

market clearing is attained.

Throughout the above steps, the agents use a forecasting rule to generate their expectations

of the bond price in the future, based on the future macroeconomic state. In order that this

expectation be unbiased, the above algorithm is iterated using guesses of the policy rule until the

forecasting rule is within tolerance of the relevant sample means.

1.2 Scale of the Problem

The scale of the project that we are aiming at for the solution portion of the model is to use grids

of between a few hundred and a few thousand gridpoints each for the continuous variables (xi, q).

This means approximating the optimal policy function on 4NxNq gridpoints.

At the high end, the scale of the solution step is limited by the available amount of memory

for GPU computation, since two approximate functions must be stored on the device at all times,

taking up 32NxNq bytes of space at double precision. At the low end, the ability to parallelize

across gridpoints makes this procedure economical for nearly any scale.

The scale of the project that we are aiming at for the simulation portion of the model is to use

2



a few thousand agents over thousands of periods, for example, 5,000 agents over 12,000 periods

(of which 2,000 is burn-in).

At the high end, the limitation is again the available amount of memory for GPU computation,

as the program is currently written, since the simulation output arrays must hold 24NsimNt bytes

on the device. At the low end, since parallelization can only occur across agents in the simulation,

and not across time, this algorithm may not yield speedup for very small values of Nsim.

1.3 Distribution of Labor

The division of labor for the project was as follows: Dan Greenwald derived the simulation

algorithm, and prepared the slides and writeup. Kevin Mullin derived the solution algorithm.

1.4 Instructions

A makefile is included in the code directory that should build all the relevant code. It is necessary

to have OpenCL installed in order to run the code. The main file is solve.c, which in turn calls

OpenCL kernels contained in the file solve.cl. The program solve.c can be run without any

arguments, in which case default arguments are used. Alternatively, you can use the syntax

./solve [Nx] [Nq] [Nsim] [Nt] [use gpu]

Where the first four variables are the desired values of Nx,Nq,Nsim, and Nt, respectively,

and the last value is whether you want to run the algorithm on an NVIDIA GPU (if equal to 1)

or on an AMD CPU platform (if equal to 0). A commented-out line of code in solve.c allows

you to replace this with an Intel CPU platform if desired.

Inside of solve.c, the macro OUTPUT, determines whether the program saves the simulation

results arrays to the directory in binary files. Set OUTPUT to 1 to save in this fashion, or to 0 to

omit saving (e.g. for evaluating timings).

Two shell scripts were used to obtain the timing results, timings.sh and timings cpu.sh,

for the GPU and CPU results, respectively. To run the GPU shell script on the Bowery cluster,

you can use the PBS file job.pbs, using the command qsub job.pbs which will set up a session

on the appropriate cuda queue.

Finally, the Matlab script results.m was used to create the graphs and output parts of the

tables used in the writeup.

3



2 Economic Background

This section describes the economic problem being solved in relatively theoretical terms. The

reader interested only in the mathematical nuts and bolts of the model should skip to Section 3.

The reader interested only in the computational algorithm should skip further, to Section 4.

2.1 Macroeconomic Modeling

Macroeconomics is the subfield of economics that deals with outcomes for an entire economy, as

opposed to a single market. A standard macroeconomic model will seek to describe an economy

in which prices adjust so that demand equals supply, and such that the interest rates on financial

assets adjust so that the quantity of financial assets sold equals the quantity of financial assets

purchased.

For several decades, the trend has been to develop “microfounded” models, in which macro-

level behavior like total consumption is derived by considering the consumption decision of in-

dividual economic agents, and then aggregating over many agents’ actions to obtain an overall

result. These microfoundations are designed to keep macroeconomic models closer in line with

reality, and provide testable checks on the theories macroeconomics propose (i.e., if your model

is correct, then X, Y, and Z should be observed in micro-level data).

However, the task of aggregating over many individual decisions can impose serious mathe-

matical difficulties. In particular, macroeconomic outcomes may depend on the entire distribution

of individual states and characteristics across individuals. For example, the behavior of an econ-

omy with a large degree of wealth inequality may differ from one with less inequality, even if the

two economies exhibit the same average level of wealth. Therefore, modeling the macroeconomy

using a microfounded model may depend on keeping track of entire distributions for each variable

— infinite-dimensional objects that are difficult to work with numerically.

These obstacles have often been overcome through the use of simplifying, but unrealistic,

assumptions, to ensure that the distributions of states across agents do not matter, and that

the overall state of the macroeconomy can be summarized in a few aggregate statistics. These

assumptions often take the form of perfect insurance markets, in which agents can insure against

any possible event that may occur. Since agents do not like risk, they generally insure away all

their individual risk, so that their behavior only depends on aggregate conditions — allowing for

easy aggregation.

4



2.2 The Heterogeneous-Agent Approach

While these assumptions have allowed for many years of productive macroeconomic research, they

miss major features of the choices facing most individuals. In reality, people face many forms of

uninsurable risk such as unexpected changes to wages or unemployment. In addition, most people

only have access to a limited set of financial instruments with which to invest, and often face strict

borrowing limits, especially on unsecured debt, which they cannot exceed.

Incorporating these features into a microfounded macroeconomic model leads to what is typ-

ically known as a “heterogeneous-agent” model, in which micro-level differences between agents

are important, and the entire distribution of individual states must be accounted for. This leads

to three kinds of problems, all of which are typically computationally intensive to overcome. A

good example of this type of model, on which the model for this project is based, is that of

Krusell and Smith (1998), although there are many other examples (see, e.g., Guvenen (2011) or

Heathcote, Storesletten and Violante (2009) for surveys).

2.2.1 Solution

The first issue is that removing perfect insurance markets yields a much more complicated individ-

ual problem, in which agents must carefully consider the risks posed by uninsurable fluctuations

at all times in the future. The optimal policies typically can only be calculated numerically, and

standard grid-based approximations of policy functions are subject to the “curse of dimensional-

ity” as the number of state variables increases, leading to large computational burden for all but

the most simple models.

2.2.2 Simulation

The second problem posed by a heterogeneous-agent model is that macroeconomic behavior now

depends on the entire distribution of individual states across agents. Therefore, analyzing the

behavior implied by the model typically involves simulating the behavior of thousands of agents,

and mechanically aggregating to obtain macroeconomic results over thousands of time periods. If

prices must be set so that markets in goods or financial assets must clear, then each period may

need to be simulated many times as an algorithm finds the correct price. Therefore, simulation

can be a computationally intensive step even if the underlying model is very simple and easy to

solve.

5



2.2.3 Forecasting

The final problem is that the agents in a realistic model are forward looking, meaning that agents

have to have some way of forecasting what they expect to occur in the future based on current

conditions. When current conditions are determined by an antire distribution across agents, then

it is a challenging task to translate that object into a reasonable forecast. Instead, economists

usually assume that agents use some forecasting rule based on aggregate variables. But to be

realistic, these rules can lead to forecasting error, but should not be particularly biased (i.e.

everyone should not always forecast incorrectly in the same way). But since behavior depends

on the forecasting rule, and the bias of the forecasting rule depends on behavior, this leads to a

“fixed-point” problem that may involve running the solution and simulation steps multiple times,

adding to the computational burden.

2.2.4 Computational Performance

Despite these challenges, many of the computations involved in solving these models are highly

parallelizable, and should therefore yield massive speedup relative to a serial computation. In

particular, solving and simulating these models often requires the type of repeated simple calcu-

lation that is perfect for GPU computation. This should allow not only for convenience allowed

by the reduction in wait times, but much more important, allow for more complex models or more

accurate solutions to become tractable.

3 The Model

This next section will summarize the economic model that is being solved, which will be the

foundation for the computational routine. The reader interested in the computational routine

only should skip ahead to Section 4.

3.1 Environment

Time is modeled as a sequence of discrete periods, indexed by t (although I will typically suppress

the dependence of variables on t in the notation). The economy is populated by a continuum

of infinitely-lived agents indexed by i. Agents earn labor income based on their own individual

employment state, and the overall state of the macroeconomy. The employment state for agent i

is denoted ei, with ei = 1 when the agent is employed, and ei = 0 when the agent is unemployed.

6



The macroeconomic state is denoted z, with z = 0 when the economy is in a low-productivity

(“recession”) state, and z = 1 when the economy is in a high-productivity (“expansion”) state.

Define si = (z, ei) to be the overall state for agent i, which can take on four possible values, and let

y(si) be the function (identical across individuals) that translates the states into an individual’s

labor income. We will assume that si follows a Markov chain for each agent with transition matrix

P .

In practice, we parameterized the z values, the P matrix, and the y function following Krusell

and Smith (1998), which in turn chooses these values to match various empirical features of

the macroeconomy. Unlike Krusell and Smith, however, I chose the y function so that agents

receive 1/3 of their employed income in the unemployed state, which roughly corresponds to U.S.

unemployment insurance.

3.2 Preferences

In each period, agents consume resources. Agents choose state-contingent paths of lifetime con-

sumption in each period t to maximize

Vit = Et

∞∑
j=0

βju(ci,t+j)

where V is the present discounted value of lifetime consumption, Et is the mathematical expec-

tations operator conditional on time t information, β is the discount factor (which determines

the agent’s level of patience), u is a utility funciton representing the benefit an agent gets from

some level of consumption in a given period, and c is consumption. Further, V and c should be

interpreted as functions that may depend on the state at time t and t + j, respectively. We will

restrict attention to problems where u is continuously differentiable and strictly concave.

3.3 Assets

Agents can save and borrow from each other by holding positive and negative positions in a one-

period riskless bond. Denote agent i’s holdings of the bond by bi. Each agent can buy (or sell)

one unit of the bond at price q, in which case they receive (or pay) one unit of consumption in

the following period. This is equivalent to an interest rate of r = 1/q. Since there is no outside

source of funds, in each period q must be set so that total saving equals total borrowing, which

is known as “market clearing.” Mathematically, this can be expressed by the condition∫
bi di = 0

7



which must hold in each period.

3.4 Agent’s Problem

Each agent enters a given period with wealth x, where x is the amount of the consumption good

that the agent is due from his or her previous bond purchases (xit = bi,t−1/qt−1). Each agent

solves the problem

V (xi, q, si) = max
ci,bi

u(ci) + βE
[
V (bi, q

′, s′i)
∣∣∣si]

subject to

ci + qbi = xi + y(si)

ci ≥ 0

bi ≥ −B

where primes (i.e. x′i) represent values of variables in the following period.1

Given our earlier assumptions on the utility function, the agent’s optimal policy c(x, q, si) is

uniquely defined by the first order condition

qu′(c(xi, q, si)) ≥ βE
[
u′(c(x′i, q

′, s′i))
∣∣∣si] (3.1)

which must hold with equality for bi > −B, where bi = xi + y(si) − ci. The goal of the solution

algorithm will be to solve for this optimal policy function c up to a close approximation.

4 Optimal Policy Algorithm

4.1 Strategy and Approximation

The first computational task is to find the unique function c(xi, q, si) that solves the optimality

condition (3.1). In general, the solution will proceed by starting with some guess of the policy

function c0, and then on each step, choosing cn+1 to satisfy

qu′(cn+1(xi, q, si)) ≥ βE
[
u′(cn(x′i, q

′, s′i))
∣∣∣si] (4.1)

for all (xi, q, si), which again must hold with equality for bi > 0.

1Hopefully this is not confusing when primes are also used for derivatives.

8



Since xi and q are continuous variables, the function c is an infinite-dimensional object, we

must approximate it to be able to solve numerically. For this project, we use a simple approxi-

mation by choosing grids of points (x̄1, . . . , x̄Nx) and (q̄1, . . . , q̄Nq), and approximate c by defining

it at all combinations of these gridpoints and the state si. We can then use bilinear interpolation

over the (xi, q) dimension (holding si fixed) to evaluate the function.

For reasons that will become clear as the algorithm progresses, we implement this algorithm

in OpenCL using work-groups of size (Kx, 1, Ns), with Kx ≤ Nx.

4.2 Endogenous Grid Method

A simple way to perform an iteration of (4.1) would be to use a nonlinear equation solver for each

point (x̄j , q̄k, s̄l) on the grids defined earlier. However, a nonlinear equation solver will typically

require many function evaluations to find a solution, in addition to the added complexity of the

inequality constraint, making it a relatively slow and complicated method to implement

A better method, assuming that the function u′ has a known inverse, is to take advantage of

the fact that the left side of (3.1) can be inverted in closed form (although the right side cannot).

Along these lines, the improved method is to define a grid over bond holdings, (b̄0, . . . , b̄Nb−1, and

solve for the right hand side of (3.1) given (b̄j , q̄k, s̄l). To perform this task efficiently in parallel,

each work item with, say, global id (p, 1, r) calculates u′(b̄p, q̃(s̄r), s̄r) and stores the resulting

value in local memory. Each work-item, again with arbitrary global id (p, 1, r), now sums over

the terms P (r, r′)u′(b̄p, q̃(s̄r′), s̄r′) for r′ = 1, . . . , Ns, using the previous results. This is the logic

for choosing the s dimension of each work-group to be equal to Ns.

With the expectation terms in hand on our b̄ grid, we can then solve for ci for each combination

(b̄j , q̄k, s̄l) using the relation

ci = u′−1
{
βq̄−1k βE

[
u′(cn(b̄j , q̃(s

′
i), s

′
i))
∣∣∣si]}

which allows us to solve (3.1) in one step. Note that we do not have to worry about (3.1) holding

with equality because at most one point on our b̄ grid is equal to −B. Define c∗j to be the value

obtained by solving (3.1) for bi = b̄j . Then we can return to a mapping between xi and ci by

using the definition xi = ci + bi − y(si) to solve for the implied starting wealth values x∗j given c∗j

and b̄j .

Applying this algorithm on a given iteration involves many evaluations of cn using bilinear

interpolation. As long as we have chosen our x̄ and q̄ grids such that the mappings between some

9



value xi and the nearest lower neighbor x̄j can be easily evaluated, the bilinear interpolation

procedure involves only a few floating point calculations, requires access to only four points of

data, and is in general not a major computational burden. In particular, we used polynomially

spaced grids

x̄j = xmin + (xmax − xmin)

(
j

Nx − 1

)kx

q̄j = qmin + (qmaq − qmin)

(
j

Nq − 1

)kq

with kx = 0.4 (more points for xi small) and kq = 1 (evenly spaced).

4.3 Recovering Original Grid

The method of Section 4.2 established an efficient way to solve (3.1) over a grid of values for bond

holdings bi, establishing a mapping between x∗j and c∗j for each b̄j . However, in order to be able

to perform bilinear interpolation in the next iteration, we need to return to a uniform grid system

for the xi variable that does not depend on j. In particular, we will return to our original grid

system via linear interpolation.

For fixed q̄k and s̄l, we want to be able to evaluate cn+1(x̄j , q̄k, s̄l) for each point in our x̄

grid. We can do this by finding the relevant values of x∗j such that x∗m ≤ x̄j ≤ x∗m+1, and then

interpolating accordingly between c∗m and c∗m+1.

There are two related challenges involved in this operation. The first is that the x∗ grid is

unknown (since it is a product of the algorithm) and has no known mapping to immediately obtain

the correct bin given the value x̄j . Therefore, we will have to search for the correct bin before

interpolating. The second challenge is that each work-group holds only a subset of the points of

the x∗ grid for a given (q̄k, s̄l) if the x dimension is at all large. Since we cannot synchronize across

work-groups, a second challenge is finding which work group should perform the interpolation for

each point in the x̄i grid.

We solved these problems by having each work-group load every element of the x̄ grid, one

Kx × 1 sized block at a time. One element of each block is assigned to each work-item, and that

work-item then checks whether that value of x̄j falls in that work-group’s subset of x∗ points,

which is easily done since the x∗j points are monotonically increasing in j. If the value of x̄j is

not within that subset, the work-item does nothing and proceeds to load its entry from the next

block. If the value of x̄j is within that subset, the work-item searches for the relevant bin (in local

memory) using a simply bisection algorithm, and then performs the linear interpolation. Once

this is done, the work-item updates the relevant value of cn+1(x̄j , q̄k, s̄l) in global memory, and

10



moves on to the next block.

The final complication is that points on the x̄ grid may fall below the bottom of the x∗ grid. If

we set b̄0 = −B, as we do in practice, then we know that these points must be in the constrained

region with bi = −B, and can correspondingly set ci = xi + y(si) +B.

4.4 Summary

This completes the algorithm to move from cn to cn+1. To summarize, the algorithm proceeds in

the following steps.

1. Evaluate Etu
′(cn(b̄j , q̃(s̄l), s̄l)) forreach (j, l).

2. Invert (3.1) to construct a (x∗j , c
∗
j ) mapping conditional on b̄j .

3. Load x̄ block-by-block into each work-group, checking if points fall in the relevant x∗ values,

and interpolating if so to recover cn+1.

The algorithm proceeds until the maximum distance between elements of cn and cn+1 falls

below some tolerance.

4.5 Implementation in OpenCL

Most of the specifics of how each work-group and each work-item is assigned has already been

described in the preceding sections, so this section will focus on performance and parallelization

issues.

It should be clear that all steps of this algorithm can be run in parallel, with only a few local

synchronizations required. However, because of the need to consider the entire list of x̄ points

in each work-group, this algorithm will not scale linearly, and will lose efficiency the larger the x̄

grid is compared to the local size Kx. In practice, we found that even for relatively large values

of Nx, the cost of checking irrelevant values of the x̄ grid appears tolerable. A further challenge is

that depending on where points on the x̄ grid are concentrated relative to the x∗ grid, and so the

work done by the various work groups in recovering the original grid may be unbalanced, and it is

possible that the imbalance will increase with the number of x̄ points. But overall the algorithm

is highly parallelizable, and should exhibit massive speedup from running in parallel relative to

in serial.

11



5 Simulation Algorithm

5.1 Overall Strategy

In order to determine macroeconomic behavior in a heterogeneous agent model, simulation is

required. While other methods exist, for example keeping track of weights on a histogram, we use

the method of simply simulating the paths of a large number of agents. The main computational

challenge in this section is determining the bond price in each period of the simulation that makes

markets clear.

A sample of some agents’ simulated paths can be seen in Figure 1. Note that while the bond

price makes large moves associated with the macroeconomic state (as in the agents’ forecasting

rules), it displays jitters associated with the specific market-clearing conditions, which correspond

to forecasting error on the part of the agents. In general, it can be seen from the simulations that

agents tend to build up a small buffer of assets (relative to their borrowing limit) while employed,

which they then spend down when unemployed, so as not to have a drastic fall in consumption.

To initialize the simulation, we initialize agents with zero wealth, and assign some random

previous states to each agent and to the overall economy. The initial condition can be relatively

arbitrary, as we will use a long “burn in” period for which we discard the simulation results to

ensure that the simulation has had time to lose its dependence on initial conditions.

Once the simulation is initialized, we update the simulation recursively, period-by-period. At

the start of each period t, the previous period’s simulation gives us the starting wealth xit for

each agent. We then draw the overall state zt conditional on zt−1, and then draw εit for each i

conditional on εi,t−1, zt−1, and zt.

Given a guess for qt, the bond price at time t, we evaluate agents’ optimal consumption using

the c function obtained from the methods of Section 4. Given the resulting values of cit, we can

calculate the implied bond holdings using bit = xit+yit−cit, and sum over agents to get aggregate

bond holdings,
∑

i bit.

If this sum is within some tolerance of zero, we are done for this period and move on. Oth-

erwise, we adjust the guess of qt and repeat the procedure until market clearing is obtained. In

practice, we used a bisection scheme to solve for the equilibrium value of qt, using the fact that∑
i bit > 0 when qt is too low, and

∑
i bit < 0 when qt is too high.

12



Figure 1: Simulated Paths

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2
Sample path 1

 

 
Wealth
Income

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2
Sample path 2

 

 
Wealth
Income

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2
Sample path 3

 

 
Wealth
Income

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2
Sample path 4

 

 
Wealth
Income

5.2 Implementation in OpenCL

To implement this in OpenCL, we assigned each work-item to calculate the optimal policy for

a single agent. This was performed using bilinear interpolation as usual. However, since the

number of bilinear interpolation calculations over a large simulation of thousands of agents over

thousands of periods is likely to be large relative to the number of gridpoints on which the c

function is defined, we pre-calculated the interpolation coefficients over the entire grid on the

device using an OpenCL kernel.

The only other complication with implementation in OpenCL is the need to evaluate the term∑
i bit, since the i indices are distributed across many work-groups. To address this, we used

a reduction method from the book OpenCL in Action (2011), which takes a vector of entries

in local memory and recursively adds the top half to the bottom half to efficiencly add bit over

each work-group. Because there is no global synchronization, we then wrote the sum for each

work-group to global memory, and then called a second kernel to perform the same reduction

13



over the work-group sums, since reasonable numbers of simulations do not require more than two

reductions.

Once the overall sum is calculated, it is transferred over to the host, which then determines

whether the sum is within the desired tolerance, and if not, launches the entire routine again with

a new value of qt. In this way, the algorithm only requires that a single scalar be transferred

between the host and device (once in each direction) on each iteration.

5.3 Summary

Once the market clearing value qt is obtained, we then update time t + 1 starting wealth using

xi,t+1 = bit, and continue on in the same fashion. The algorithm can therefore be summarized as

follows.

1. Initialize agents starting wealth xi0, previous employment states εi,−1, and previous macro

state z−1, and set t = 0.

2. Draw zt given zt−1.

3. Draw εit given zt, zt−1 and εi,t−1.

4. Initialize a guess for qt.

5. Calculate cit and bit for each agent using the optimal policy function.

6. If
∑

i bit is within tolerance of 0, proceed to Step 7, otherwise update the guess of qt and

return to Step 5.

7. Update xi,t+1 = bit, increment t = t+ 1, and return to Step 2.

The final step, once the simulated values have been calculated for each t, is to discard some

portion of the initial observations as “burn-in” so that the resulting sample is not dependent on

initial conditions.

Overall, this algorithm is completely parallel when calculating agents’ policies, and highly

parallel in the reduction step,although some work items are idle at some times during the reduc-

tion. Further, there is little overhead in terms of transferring data between host and device until

the computation is complete, and there are relatively many floating point operations relative to

memory operations, so overall we expected substantial speedup from parallelizing this step as

well.

14



6 “Meta” Algorithm for Calculating q̃

Throughout Section 4 and Section 5, we assumed a forecasting rule for q̃, and the resulting optimal

policy solution and simulation depend on our guess for this rule. However, in principle there is

good reason to want this rule to be at least unbiased, so that agents’ estimates are not perpetually

too low or too high.

Since our forecasting rule was based on the aggregate state z, this is equivalent to demanding

that q̃(z̄j) be equal to the sample average of values qt in periods in which zt = z̄j . To solve this

fixed point problem, we begin with a guess for q̃, and run the algorithms described in Section 4

and Section 5. We then evaluate the sample means for each possible zt state, and update q̃(z̄j)

for the next iteration to be equal to this sample mean. With this new value of q̃ in hand, we

proceed to the next iteration, and continue until the error between q̃ and the sample means falls

within tolerance.

For this method, it is essential that the random draws of εit and zt be kept constant across

iterations, otherwise the algorithm may not converge. For computational efficiency, it is impor-

tant that each calculation of the optimal policy in Section 4 begin with the solution from the

previous iteration, which is likely to be very close to the new solution, and will substantially

speed convergence time.

7 Timings

7.1 GPU Timings

The GPU timings are summarized in Tables 1 and 2, and in Figures 2 and 3.

There are four ways in which the scale of the problem can be changed, by adjusting the

number of x gridpoints (Nx) or the number of q gridpoints (Nq) in the solution algorithm, or by

adjusting the number of simulated agents (Nsim) or the number of periods (Nt) in the simulation

algorithm. Since these produced different results, we varied each of these values while holding the

others constant, to isolate the effects of changing each scale.

Increasing the Nx scale led to steadily increasing per-gridpoint timings, indicating a loss

of efficiency with the increase of the scale. This is not surprising, and follows from the scheme

described in Section 4 in which the entire x̄ grid must be loaded into each work-group and checked,

block by block. By increasing the size of the x̄ grid, but leaving the size of each work-group

15



Table 1: GPU Timings

Nx Nq Nsim Nt

125 0.002 0.004 – 1.218

250 0.005 0.008 8.070 2.429

500 0.011 0.015 8.504 4.895

1000 0.030 0.030 8.770 9.702

2000 0.095 0.060 9.136 19.489

4000 0.335 0.118 9.613 38.860

6000 0.724 0.177 9.798 58.453

8000 1.251 0.236 10.130 77.714

12000 – – 10.526 117.384

16000 – – 10.881 155.566

All timings are measured in seconds. The timings were obtained on a NVIDIA Tesla M2070 GPU on

NYU’s Bowery cluster. Timings are taken from the first overall iteration only in the “meta” algorithm.

Timings for Nx and Nq values are per iteration of the solution algorithm. Timings for simulations are

absolute timings for the entire simulation routine. The actual size used for the Nsim timings is the value

in the first column rounded up to the nearest multiple of 256, the work-group size. The actual size used

for the Nt timings is the value in the first column multiplied by 1.2, to allow for a 20% burn-in. While one

size is being varied, the others are held constant at Nx = 1000, Nq = 1000, Nsim = 5120, and Nt = 1200.

Because of rounding up, the 125 timing for the Nsim scaling is redundant and not included. The 12000

and 16000 timings for Nx and Nq would not run because of memory issues and are not included.

constant, this means more blocks loaded and checked per work-group, in addition to increasing

the number of work-groups, explaining the more than linear increases in the timings.

Increasing the Nq and Nt scales led to linear increases in the timings, and relatively constant

per-gridpoint timings, with the exception of slower per-gridpoint timings for very low values of

Nq. This is largely in line with our expectations — increasing Nq changes the number of work-

groups, but does not change the task of any given work-group. Similarly, each period is run in

serial, and does not affect the parallelization of the simulation algorithm, and so we should again

expect linear scaling.

Increasing the Nsim scale led to less than linear increases in the timings, and decreasing per-

16



Figure 2: GPU Timings

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nx

se
c

Varying Nx

0 0.5 1 1.5 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Nq

se
c

Varying Nq

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

100

120

140

160

Nt

se
c

Varying Nt

0 0.5 1 1.5 2

x 10
4

8

8.5

9

9.5

10

10.5

11

Nsim

se
c

Varying Nsim

Student Version of MATLAB

gridpoint timings. We are unsure exactly of why this is the case, but believe it to be because

the number simulated agents is relatively small regardless of the numbers used, and the actual

floating point computations can be handled nearly instantaneously by any powerful processor.

Therefore, we suspect that the Nsim scale is not really the limiting factor in the timings.

7.2 CPU Timings

For comparison, we repeated the timings on the CPU, although we omitted some of the larger

sizes for brevity, since overall the CPU timings were much slower than the CPU timings. The

CPU timings are summarized in Tables 3 and 4, and in Figures 4 and 5.

For the Nx scaling, the CPU timings exhibited some strange properties, barely increasing

linearly for small sizes of Nx, and then jumping by a factor of roughly 100 per gridpoint from

Nx = 2000 to Nx = 4000, and then increasing roughly linearly again. I am unsure of the reason

for this result (I suspect it is a memory issue), but it makes the GPU computation especially

17



Figure 3: GPU Timings Per Gridpoint

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−7

Nx

se
c

Varying Nx

0 0.5 1 1.5 2

x 10
4

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35
x 10

−8

Nq

se
c

Varying Nq

0 0.5 1 1.5 2

x 10
4

1.578

1.58

1.582

1.584

1.586

1.588

1.59

1.592

1.594
x 10

−6

Nt

se
c

Varying Nt

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

−5

Nsim

se
c

Varying Nsim

Student Version of MATLAB

attractive for large values of Nx.

The Nq results on the CPU are similar to the Nx results, again with a strange jump from

Nq = 2000 to Nq = 4000, and linear increases otherwise.

The Nsim timings no longer exhibit the same less than linear increases as in the GPU case, and

in fact now show more than linear increases when Nsim is large. This may be because simultaneous

computation of the agents’ simulations is no longer so effortless for the CPU.

The Nt timings are very similar in their profile to the GPU case, once again increasing roughly

linearly.

7.3 Speedup

The speedup from CPU to GPU appears to be quite large for some scalings, and speedup results

are summarized in Table 5 and Figure 6.

In general, the speedup appears to be larger for the solution algorithm than for the simulation

18



Figure 4: CPU Timings

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nx

se
c

Varying Nx

0 0.5 1 1.5 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Nq

se
c

Varying Nq

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

100

120

140

160

Nt

se
c

Varying Nt

0 0.5 1 1.5 2

x 10
4

8

8.5

9

9.5

10

10.5

11

Nsim

se
c

Varying Nsim

Student Version of MATLAB

algorithm. This may be because the solution algorithm runs a larger set of computations in

parallel (the entire grid), whereas the simulation algorithm only runs the simulation for each time

t in parallel, and across times t in serial. Still, the GPU beats the CPU for both algorithms at

all scales, and gains a large advantage over the CPU for large values of Nsim. It is also clear

that the GPU holds a potentially huge advantage for the simulation step, making this type of

parallelzation invaluable for solving optimal policy functions for complex models.

8 Conclusion

Overall this project was highly successful yielding tremendous returns to parallelization, and will

be nearly directly applicable to Dan Greenwald’s Ph.D. thesis work, as the model we use is a

simplification of the types of model that he uses in his research. The speedup gained should allow

for otherwise intractable models to be addressed or for existing computations to be made much

19



Figure 5: CPU Timings Per Gridpoint

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−7

Nx

se
c

Varying Nx

0 0.5 1 1.5 2

x 10
4

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35
x 10

−8

Nq

se
c

Varying Nq

0 0.5 1 1.5 2

x 10
4

1.578

1.58

1.582

1.584

1.586

1.588

1.59

1.592

1.594
x 10

−6

Nt

se
c

Varying Nt

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

−5

Nsim

se
c

Varying Nsim

Student Version of MATLAB

more precise. GPU computation using OpenCL therefore appears to be a highly valuable tool for

heterogeneous agents models, and one that we are very grateful to have learned.

20



Figure 6: Speedup: Ratio of CPU to GPU Timings

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

300

350

Nx

se
c

Varying Nx

0 0.5 1 1.5 2

x 10
4

0

200

400

600

800

1000

Nq

se
c

Varying Nq

0 0.5 1 1.5 2

x 10
4

2.7

2.75

2.8

2.85

2.9

2.95

3

Nt

se
c

Varying Nt

0 0.5 1 1.5 2

x 10
4

1

2

3

4

5

6

7

Nsim

se
c

Varying Nsim

Student Version of MATLAB

21



Table 2: GPU Timings per Gridpoint

Nx Nq Nsim Nt

125 1.837(-8) 3.269(-8) – 1.586(-6)

250 1.907(-8) 3.128(-8) 2.627e-05 1.581(-6)

500 2.167(-8) 3.011(-8) 1.384e-05 1.594(-6)

1000 2.994(-8) 2.985(-8) 7.137(-6) 1.579(-6)

2000 4.755(-8) 2.978(-8) 3.717(-6) 1.586(-6)

4000 8.365(-8) 2.954(-8) 1.956(-6) 1.581(-6)

6000 1.206(-7) 2.945(-8) 1.329(-6) 1.586(-6)

8000 1.564(-7) 2.953(-8) 1.031(-6) 1.581(-6)

12000 – – 7.290(-7) 1.592(-6)

16000 – – 5.622(-7) 1.583(-6)

All timings are measured in seconds. Numbers in parentheses represent powers of ten for scientific notation.

The timings were obtained on a NVIDIA Tesla M2070 GPU on NYU’s Bowery cluster. Timings are taken

from the first overall iteration only in the “meta” algorithm. The number of gridpoints is given by 4 NxNq

for the Nx and Nq simulations, and NsimNt foor the Nsim and Nt simulations. Timings for Nx and Nq

values are per iteration of the solution algorithm. Timings for simulations are absolute timings for the

entire simulation routine. The actual size used for the Nsim timings is the value in the first column rounded

up to the nearest multiple of 256, the work-group size. The actual size used for the Nt timings is the value

in the first column multiplied by 1.2, to allow for a 20% burn-in. While one size is being varied, the others

are held constant at Nx = 1000, Nq = 1000, Nsim = 5120, and Nt = 1200. Because of rounding up, the

125 timing for the Nsim scaling is redundant and not included. The 12000 and 16000 timings for Nx and

Nq would not run because of memory issues and are not included.

22



Table 3: CPU Timings

Nx Nq Nsim Nt

125 0.029 0.032 – 3.342

250 0.059 0.064 9.584 6.761

500 0.123 0.128 11.963 13.854

1000 0.256 0.256 13.026 28.707

2000 0.544 0.514 13.691 54.403

4000 112.886 116.237 25.045 108.647

6000 174.475 152.638 31.847 161.420

8000 247.291 231.218 40.149 –

12000 – – 54.820 –

16000 – – 75.595 –

All timings are measured in seconds. The timings were obtained on a 2.67 GHz Intel Xeon Processor using

the AMD Platform on NYU’s Bowery cluster. Timings are taken from the first overall iteration only in

the “meta” algorithm. Timings for Nx and Nq values are per iteration of the solution algorithm. Timings

for simulations are absolute timings for the entire simulation routine. The actual size used for the Nsim

timings is the value in the first column rounded up to the nearest multiple of 256, the work-group size.

The actual size used for the Nt timings is the value in the first column multiplied by 1.2, to allow for

a 20% burn-in. While one size is being varied, the others are held constant at Nx = 1000, Nq = 1000,

Nsim = 5120, and Nt = 1200. Because of rounding up, the 125 timing for the Nsim scaling is redundant

and not included. Other missing entries are omissions simply due to the long length of these timings.

23



Table 4: CPU Timings per Gridpoint

Nx Nq Nsim Nt

125 2.349(-7) 2.545(-7) – 4.352(-6)

250 2.372(-7) 2.555(-7) 3.120(-5) 4.402(-6)

500 2.468(-7) 2.567(-7) 1.947(-5) 4.510(-6)

1000 2.557(-7) 2.562(-7) 1.060(-5) 4.672(-6)

2000 2.722(-7) 2.572(-7) 5.571(-6) 4.427(-6)

4000 2.822(-5) 2.906(-5) 5.095(-6) 4.421(-6)

6000 2.908(-5) 2.544(-5) 4.320(-6) 4.379(-6)

8000 3.091(-5) 2.890(-5) 4.084(-6) –

12000 – – 3.797(-6) –

16000 – – 3.906(-6) –

All timings are measured in seconds. Numbers in parentheses represent powers of ten for scientific notation.

The timings were obtained on a 2.67 GHz Intel Xeon Processor using the AMD Platform on NYU’s Bowery

cluster. Timings are taken from the first overall iteration only in the “meta” algorithm. The number of

gridpoints is given by 4 NxNq for the Nx and Nq simulations, and NsimNt foor the Nsim and Nt simulations.

Timings for Nx and Nq values are per iteration of the solution algorithm. Timings for simulations are

absolute timings for the entire simulation routine. The actual size used for the Nsim timings is the value

in the first column rounded up to the nearest multiple of 256, the work-group size. The actual size used

for the Nt timings is the value in the first column multiplied by 1.2, to allow for a 20% burn-in. While one

size is being varied, the others are held constant at Nx = 1000, Nq = 1000, Nsim = 5120, and Nt = 1200.

Because of rounding up, the 125 timing for the Nsim scaling is redundant and not included. The 12000

and 16000 timings for Nx and Nq would not run because of memory issues and are not included.

24



Table 5: Speedup: Ratio of CPU to GPU Timings

Nx Nq Nsim Nt

125 0.029 0.032 – 3.342

250 0.059 0.064 9.584 6.761

500 0.123 0.128 11.963 13.854

1000 0.256 0.256 13.026 28.707

2000 0.544 0.514 13.691 54.403

4000 112.886 116.237 25.045 108.647

6000 174.475 152.638 31.847 161.420

8000 247.291 231.218 40.149 –

12000 – – 54.820 –

16000 – – 75.595 –

All timings are measured in seconds. The CPU timings were obtained on a 2.67 GHz Intel Xeon Processor

using the AMD Platform and the GPU timings were obtained on a NVIDIA Tesla M2070 GPU, both on

NYU’s Bowery cluster. Timings are taken from the first overall iteration only in the “meta” algorithm.

Timings for Nx and Nq values are per iteration of the solution algorithm. Timings for simulations are

absolute timings for the entire simulation routine. The actual size used for the Nsim timings is the value

in the first column rounded up to the nearest multiple of 256, the work-group size. The actual size used

for the Nt timings is the value in the first column multiplied by 1.2, to allow for a 20% burn-in. While one

size is being varied, the others are held constant at Nx = 1000, Nq = 1000, Nsim = 5120, and Nt = 1200.

Because of rounding up, the 125 timing for the Nsim scaling is redundant and not included. Other missing

entries are omissions simply due to the long length of these timings.

25



References

[1] Guvenen, Fatih, “Macroeconomics With Heterogeneity: A Practical Guide.” NBER Working

Paper, No. 17622, 2011.

[2] Heathcote, Jonathan, Storesletten, Kjetil, and Violante, Giovanni L., “Quantitative Macroe-

conomics with Heterogeneous Households.” NBER Working Paper, No. 14768, 2009.

[3] Krusell, Per and Smith, Anthony A., Jr., “Income and wealth heterogeneity in the macroe-

conomy.” Journal of Political Economy Vol. 106, No. 5, 1998.

[4] Scarpino, Matthew, OpenCL In Action: How to Accelerate Graphics and Computation. Man-

ning Publications Co., 2011.

26


