MPI Pricing Call Option Pseudo and Sobol Monte Carlo

HPCFall2012 Florencia Ortiz 12/18/2012

• Pricing a Call Option

- $I_N[f] = \frac{1}{N} \sum_{k=1}^N f(\text{sequence of random points}, K) = e^{-rT} [\frac{1}{N} \sum_{k=1}^N \max(S_T^k K, 0)]$
- I[f] = Black Scholes formula

$$\varepsilon = |I[f] - I_N[f]|$$

- Slow convergence: $\varepsilon_N = \frac{\sigma(f)}{N^{1/2}}$
 - $f(\sigma)$ can be decreased by : antithetic variables or control variates.
 - But the rate the converge remains: $\varepsilon_N \sim \frac{1}{N^{1/2}}$

- MC with Sobol
 - Improve convergence in Monte Carlo $\varepsilon_N = \frac{O(\ln N)^n}{N}$
 - Discrepancy is a measure of deviation of uniformity.
 - Best uniformity of distribution for as N goes to infinity.
 - Parallelization can be achieved by changing parameters in the "Preprocessing" part of the code.
 - No inter-processor communication is needed.

- MC with Sobol
 - Improve convergence in Monte Carlo $\varepsilon_N = \frac{O(\ln N)^n}{N}$
 - If N= 2^k , k is integer
 - Discrepancy is a measure of deviation of uniformity.
 - Best uniformity of distribution for as N goes to infinity.
 - Parallelization can be achieved by changing parameters in the "Preprocessing" part of the code.
 - No inter-processor communication is needed.

Intel(R) Core (TM) i7-3612QM CPU@2.10GHz RAM 8.00GB 64 bit OS

Random/ Processors Number	Seconds	Exact Price	MC Price	NPaths	Ν	Absolute Error
Sobol/8	6.340026	19.620613	19.561750	2	1000000	5.886e-02
Pseudo/8	6.575098	19.620613	21.795881	2	1000000	2.175+00
Sobol /4	3.427575	19.620613	19.417058	1	1000000	2.036e-01
Pseudo/4	3.466962	19.620613	21.053336	1	1000000	1.433e+00

Intel Core 2 Duo <u>CPU@3.06GHz</u> RAM 4.00GB 32 bit OS

Random/ Processors Number	Seconds	Exact Price	MC Price	nPaths	Ν	Absolute Error
Sobol/4	12.831499	19.620613	19.731652	2	1000000	1.110e-01
Pseudo/4	12.721947	19.620613	25.817706	2	1000000	6.197e+00
Sobol /4	18.478064	19.620613	19.446532	3	1000000	1.741e-01
Pseudo/4	18.931408	19.620613	29.742907	3	1000000	1.012e+01

Precision Floating	Real Number $y = (1 + x)2^{r}$ 0 < x < 1	The most significant	Binary representation exponent part	Binary representation of the mantissa part
Single	y is d_0d_1 d_{31}	<i>d</i> ₀ =0	d ₁ d ₈ r+127 r is the floating point exponent -126 < r < 127	$d_{9}d_{31}$ $x2^{23}$
Double	$y is d_0 d_1 d_{63}$	$d_0 = 0$	d ₁ d ₁₁ r is the floating point exponent -1022 < r < 1023	$d_{12}d_{63}$ $x2^{52}$

Monte Carlo Method Atanassov's Algorithm Sobol Generator

Avoids the multiplication and conversion from integer to floating point

Single	Double
1. X ~[0,1)	
2. Y is the mantissa	
3. Y is stored as a 32 bit	
integer	
4. If one xor's 001111111 to	4. If one xor's 001111111111
the nine most-significant bits	to the twelve most-significant
of y	bits of y
5. Remains in memory is the	
floating-point representation	
of (1+x).	

- 1. Input initial data:
 - if the precision is single, set the number of bits b to 32, and the maximal power of two p to 23, otherwise set b to 64 and p to 52;
 - dimension s;
 - direction vectors {a_{ij}}, i = 0, p, j = 1,..., s representing the matrices A₁,..., A_d (always a_{ij} < 2ⁱ⁺¹);
 - scrambling terms d₁,..., d_s arbitrary integers less than 2^p, if all of them are equal to zero, then no scrambling is used;
 - index of the first term to be generated n;
 - scaling factor m, so the program should generate elements with indices $2^m j + n$, j = 0, 1, ...
- Allocate memory for s * l b-bit integers (or floating point numbers in the respective precision) y₁,..., y_s..
- Preprocessing: calculate the twisted direction numbers v_{ij}, i = 0,..., p 1, j = 0,..., s:
 - for all j from 1 to s do
 - for i = 0 to p 1 do
 - if i=0, then $v_{ij} = a_{ij}2^{p-m}$, else

$$v_{ij} = v_{i-1j} \mathbf{xor}(a_{i+m,j} * (2^{p-i-m}));$$

- 4. Calculate the coordinates of the $n^{-\text{th}}$ term of the Sobol' sequence (with the scrambling applied) using any known algorithm (this operation is performed only once). Add +1 to all of them and store the results as floating point numbers in the respective precision in the array y.
- Set the counter N to ⁿ/_{2^m}.
- Generate the next point of the sequence:
 - When a new point is required, the user supplies a buffer x with enough space to hold the result.
 - The array y is considered as holding floating point numbers in the respective precision, and the result of subtracting 1. from all of them is placed in the array x.
 - Add 1 to the counter N;
 - Determine the first nonzero binary digit k of N so that N = (2M + 1)2^k (on the average this is achieved in 2 iterations);
 - consider the array y as an array of b-bit integers and updated it by using the k^{th} row of twisted direction numbers:
 - for i = 1 to d do
 - $y_i = y_i xorv_{ki}$.
 - return the control to the user. When a new point is needed, go to 6.

Conslusion

- Monte Carlo Convergence with Sobol's sequences can be generated with speeds comparable or superior to those of pseudo random generators.
- MPI is straightforward to be implemented to do Monte Carlo with Sobol's sequences.
- Pricing Exotic Options can be easily implemented.

- Acknowledgments
 - The author would like to thanks Prof. Andreas Kloeckner and Prof. Marsha Berger for their considerable time.

- References
 - Atanassov E. I.: A new Efficient Algorithm for Generating the Scrambled Sobol's Sequence. (2003)
 - URL: http://parmac1.bas.bg/emanouil/sequence.html.