
Vector Quantization Parallelization

Hai Zhu

New York University

1 Introduction

Quantization is the process of representing a large set of input values with a much smaller set. In

signal processing and image processing, Vector Quantization is a classical quantization which

extends the scalar quantization to multi-dimensional space. It is widely used in many

applications such as data compression, data correction, pattern recognition, and density

estimation. This project proposes a parallel implementation of Vector Quantization for image

compression processing.

Vector Quantization works by dividing a large set of source vectors into groups having

approximately the same number of vectors closest to them [1] and each group is represented by

the vector offering the lowest distortion among all the vectors in a predesigned set of vectors

(codebook). For image compression, a large amount of computation is required. The most time-

consuming factor on compression is “nearest neighbor search” [2] to find the vector nearest to a

source input among a large number of predesigned vectors.

Vector Quantization involves the comparison of all distances between a source vector and

vectors in a codebook. Due to the fact that comparisons of distances between each source

vector and all vectors in the same codebook are independent in the processes of Vector

Quantization, parallelization of the algorithm can be achieved.

The work of Vector Quantization can be divided into three parts as codebook generation,

encoding procedure and decoding. Since codebook generation is an important part of Vector

Quantization, which involves most algorithms and computations in the processes of VQ image

compression, this report mostly focuses on the parallel implementation of LBG algorithm, one of

codebook generation algorithms.

2 Background

This section presents the theoretical background of image compression, vector quantization, and

codebook generation.

2.1 Image compression

The objective of data compression is reducing the number of bytes stored or transmitted,

without an appreciable loss of information. There are two types of data compression, lossless

and lossy. In lossless data compression, the original information can be completely recovered

from the compressed data. However, since some error was introduced, the original data cannot

be completely recovered in lossy data compression.

In Vector Quantization, compression is achieved by transmitting or storing the indices associated

to the vectors in the codebook instead of the vectors because of the far fewer bits required for

the indices.

2.2 Vector Quantization

Vector Quantization is one of various data compression techniques. It exploits the correlation

that exists between neighboring data of the input values. The quantization can be divided into

two distinguishable part: a lossy encoder and a reproduction decoder. The following Figure 1 [3]

shows the principle of the resulting encoder and decoder.

The image to be encoded is broken into blocks or vectors. The encoder maps each input vector

to one of a finite set of predesigned vectors. This set of predesigned vectors is the codebook and

the vectors in it is called codevectors. The encoder finds the closest matching codevector from

the codebook by calculating the distortion between the input vector and each of the

codevectors and outputs the index of that codevector. Then the index is transmitted to the

decoder. The decoder has the same codebook as encoder and uses the codevectors identified by

the indices to piece the image back.

2.3 Codebook and codebook generation

Codebook consist of a set of vectors, called codevectors. VQ algorithms use codebook to map an

input vector to the codevector closest to it, thus codebook is the representative of the input

data.

Codebook generation plays a fundamental role in the performance of data compression based

on VQ, because the image quality is the result of the comparison between input vectors with

codebook. A good codebook should be able to represent the variety of source vectors within the

minimum distortion.

Codebook generation problem can be stated as follows:

Given a vector source with its statistical properties known, given a distortion measure, and given

the number of codevectors, find a codebook and a partition which result in the lowest average

distortion.

Figure 1: The principle of the encoder and the decoder used in vector quantization.

Due to the need for multi-dimensional integration, the design of a VQ is considered to be a

challenging problem. However, since in 1980, Linde, Buzo, and Gray proposed a VQ design

algorithm based on a training sequence [4], which bypasses the need for multi-dimensional

integration, vector quantization has been widely studied.

LBG Algorithm [5]: This is an iterative clustering descent algorithm which yields a locally

optimum codebook for a given source or distribution. Its basic function is to minimize the

distance between the vectors in the training sequence and the codevector that is closest to it.

Since LBG algorithm is the most famous and widely used algorithm for vector quantization, the

algorithm of vector quantization chosen for parallelizing is the LBG algorithm in this project. The

next section describes the LBG algorithms in more details.

3 Design problem and Algorithm implementation
3.1 Distortion

The codebook used for the encoding and decoding is optimal in the sense that the overall

distortion is minimal. There the distortion between an input vector and a codevector is

measured by the mean squared error. The process of calculate a distortion described as follows

[4]:

1. Given a training sequence consisting of M source vectors and each vector is k

dimensional:

𝑇 = {X1, X2, … , XM}; Xm = (xm,1, xm,2, … , xm,k), m = 1,2, … , M

The training sequence can be obtained from input source data. M should be sufficiently

larger so that all the statistical properties of the source can be captured by training

sequence.

2. A codebook with N codevectors. Each codevector is k dimensional

C = {c1, c2, … , cN}; 𝑐𝑛 = (cn,1, cn,2, … , cn,k), n = 1,2, … , N

3. Let Sn be the encoding region associated with codevector cn and P = {S1, S2, … , SN}

denote the partion of the space. If the source vector Xm is in the region Sn, then its

approximation (denoted by Q(Xm)) is cn:

Q(Xm) = cn, if Xm ∈ Sn

4. Using squared-error distortion measure, the average distortion is:

Dave =
1

Mk
∑ ‖Xm − Q(Xm)‖2 =

1

Mk
∑ ∑(Xm𝑗 − 𝑐𝑛j)

2

𝑘

𝑗=1

M

m=1

M

m=1

3.2 LBG algorithm for codebook generation

The LBG algorithm is an exhaustive search algorithm. The algorithm requires an initial codebook

C0. This initial codebook can be obtained by the splitting or random chosen method. In this

project, we use splitting method. An initial code vector is obtained from the average of the entire

training sequence and then this codevector is split into two. The iterative algorithm is run with

these two vectors as the initial codebook. Then two codevectors are split into four and the

process is repeated until the desired number of codevector is obtained. Split Codebook is the

average amount of Training Vectors population. The result is reducing scatter data better than

random sample. The algorithm is summarized below [4].

1. Given training set T and fixed ϵ > 0 to be a “small” number.

2. Let N=1 and

c1
∗ =

1

M
∑ Xm

M

m=1

Calculate

Dave
∗ =

1

Mk
∑ ‖Xm − c1

∗‖2

M

m=1

3. Splitting: For i=1, 2, …, N,

ci
(0) = (1 + ϵ)𝑐i

∗; cN+i
(0) = (1 − ϵ)𝑐i

∗

Set N=2N

4. Iteration: Let Dave
(0) = Dave

* . Set the iteration index i=0

i. For m= 1, 2, …, M, find the minimum value of ‖Xm − cn
(i)‖

2
 (n=1,2,…, N)

Let n* be the index which achieves the minimum.

Set Q(Xm) = cn∗
(i)

ii. For n=1, 2, …, N, update the codevector (centroid)

cn
(i+1) =

∑ XmQ(Xm)=cn
(i)

∑ 1Q(Xm)=cn
(i)

iii. Set i=i+1

iv. Calculate

Dave
(i) =

1

Mk
∑ ‖Xm − Q(Xm)‖2

M

m=1

v. If Dave
(i)

−
Dave

(i)

Dave
(i−1) > ϵ , repeat from step(i)

vi. Set Dave
∗ = Dave

(i)
. For n=1, 2, …, N, set cn

∗ = cn
(i)

 as the final codevectors

5. Repeat Steps 3 and 4 until the desired number of codevector is obtained.

3.3 Complexity

In code generation and encoding process, the nearest neighbor search is most time-consuming

factor. The simplest way to find the nearest neighbor codevector is to compute for a given

source vector the distortion for each of the N possible codevectors and to choose the codevector

with the minimal distortion. The exhaustive search algorithm and the partial distance search

algorithm exploit this idea.

The complexity can be easily derived from the algorithm. We can see given M input vectors, N

codevectors, and each vector is in k dimensions, then the number of multiplies is kMN, the

number of additions and subtractions is MN((k - 1) + k) = MN(2k-1), and the number of

comparison is M(N-1) . The number of total operation is 3MN (k-1).

e.g. For an 256x256 image, a codebook of 256, and vectors in 16 dimensions, there is 1,048,576

times Squired Euclidean Distance (including 32,505,856 additions and 16,777,216

multiplication).

4 Parallel Implementation

Although VQ offers more compression for the same distortion rate as scalar quantization and

PCM, yet is not as widely implemented. This due to two things. The first is the time it takes to

generate the codebook, and second is the speed of the search. So to parallelize VQ for getting

better performance will help the applicability of VQ algorithm.

Due to the fact that all input vectors are compared with the same codebook independently,

division of work is clearly visualized and parallelization of the algorithm can be achieved. Taking

the advantage of SIMD processors, we divided input training data into chunks and share a single

copy of codebook in the primary memory of each processors.

The following illustrates the psudo-code of parallelized code in codebook generation.

Input: training data T with M vectors, each vector is k dimensional, and the
desired number of codevector N
Output: codebook with N codevectors, each codevector is k dimensional.

Initialize codebook c0 = centroid of all training data
while (c.size < N){
 Split codebook:

c.size = 2*c.size;
foreach ci=ci/2+e; ci-1=ci/2

 while(ave_dist>threshold) {
:parallel execution at for loop
foreach x in T do
 mindist<-min(dist(x,c0),dist(x, c1),…);
 index <- codebookindex(mindist);
 centroidindex+=x;
 countindex ++;
 dist+=mindist;
end
update c = centroid/count
ave_dist =dist/t.size

 }
}

In above code, the parallelized partial is the algorithm for nearest neighbor search, which also

involved in codebook searching. Significant speedup can be achieved when this partial is

parallelized because its complexity.

5 Experiments and Results

This project implemented VQ algorithm is sequential and parallel model. The parallelization

implemented by using OpenMP. For obtaining the complete perspective of our experiments, we

compared the results of the sequential program with the results of parallel program with varying

number of threads. The test platform is crunchy1.cims.nyu.edu, which consists of 4 16-Core

2.1GHz AMD Opteron 6272 CPUs and 256GB memory.

We use a training set taken from 512*512 8bpp monochrome image of Lena.pgm. The image is

partitioned into 4*4 blocks and the blocks are used to design the codebook by LBG algorithm.

The desired size of codebook is 256.

Our program parallelized several parts of image compression processes, including codebook

generation, encoding and decoding. Although the codebook generation is the most time-

consuming process, it’s difficult to measure the performance of codebook generation because of

the complexity of codebook generation, increasing size of codebook and the amount of

calculation somehow decided by the distortion threshold. So we use elapsed time to make some

approximate evaluation.

The above figure shows that speedup can be achieved if the codebooks are generated in parallel.

However the elapsed time began to increase after the number of threads is more than 8. The

reason is that there is a critical section in the parallelized code, the probability of entering this

section increases along with the increase of the number of threads. The overhead of critical

section will damage the speedup obtained by the increase number of processors.

In the encoding process, the nearest neighbor search is a fix scale computation and it is a core

computation of the vector quantization. We test the performance of this part on varying number

of threads and different problem sizes, namely the Codebook 256 *16, 512*16, 256*64, and

512*16, where 256 and 512 are the number of codevectors in codebook, 16 and 64 are

0

5

10

15

20

25

30

35

40

45

1 2 4 6 8 12 16 24 32

El
ap

se
d

 t
im

e
se

c

Number of threads

Codebook generation

Codebook(256*16) Codebook(512*16)

Figure 2 Elapsed time of Codebook generation

dimension of codevector. The operation in this measurement takes account into all the

operations involved in nearest neighbor search, including additions, subtractions multiplies and

comparisons. The number of total operation should be 3MN (k-1). Figure 3 shows the

performance of nearest neighbor search given various codebooks and various number of threads.

As we can see, the algorithm scales very well on the increase of the number of threads. The

figure also shows that larger number of dimensions will obtain the better performance. The

reason is that the large dimensions will block the image into fewer groups, thus the number of

iteration decreased and the workloads of each threads in the parallel execution is decreased too.

However, the large dimension usually offering higher distortion, so it is not practical in vector

quantization. The figure also displays that the larger size of codebook with same dimension gains

better performance. Since the parallel algorithm in our code is divided the input vectors (training

set) into chucks to exploit the benefits of parallelization, the increase of the size of codebook will

not change the granularity of parallelization but only increases the amount of computation in

each parallelized unit. So the appropriate amount of computation (workload) in a parallelized

unit will exploit the benefits of parallelization completely and get better performance.

6 Appendix – Source Code

6.1 Availability

The source code is available on the forge repository: http://forge.tiker.net/p/hpc12-final-

hz575

6.2 Building

0

5

10

15

20

25

30

35

1 2 4 6 8 12 16 24 32

O
p

er
at

io
n

s
G

B
/s

Number of threads

Nearest Neighbor Search

Codebook(256*16) Codebook(512*16) Codebook(256*64) Codebook(512*64)

Figure 3 Performance of nearest neighbor search

The included makefile should build the code on any generic Linux system using GCC

compilers. The OpenMP version should be 3.0 or above.

There are two parameters for defining different level of information output.

DEBUG for more details level output, including parameters of structure or function,

performance statistics of code snippets.

DEBUG0 for more high level output, including the performance statistics of the most

important algorithms in VQ, such as overall codebook generation fraction (Func

img_codebook_p()), nearest neighbor search (codebook mapping), and decoding

(decompression)

e.g. make DEBUG0=1

Running generated program will output the performance statistics of the most algorithms.

6.3 Running code

For the convenience, included test.sh can be used to run program on various number of

threads in a batch model. Modify the contents of the bash script can change the parameters

of program.

Executing the program without any arguments or invalid arguments will give a detail usage

or an explanation.

The following table shows usage and the parameters of program with explanations.

usage vqdemo cmd [-i imagefile][-o outfile][-c codebook][-a
compressedfile][-s cbsize][-w width][-h height][-n
numthr][-?]

Parameters Notes
cmd The operation, could be codebook, encode, decode, and

all.
imagefile Image file to be used for training or compression.
outfile Decompressed image file.
codebook Codebook file to be used or saved.
compressedfile Compressed file, to be used or saved.
cbsize Size of the codebook.
width Width of the block of pixels making up a vector.
height Height of the block of pixels making up a vector.
numthr The number of threads

Eaxamples:

$ vqdemo codebook [-i imagefile][-c codebook][-s cbsize][-w width][-h height][-n 4]

 Generate a codebooke using given imagefile and save as codebook.

$ vqdemo all [-i imagefile][-o outfile][-s cbsize][-w width][-h height]

 Generate codebook with given imagefile, compress image, and save decompressed

image as outfile. The generated codebook has cbsize codevectors.

References

[1] "Vector quantization," [Online]. Available: http://en.wikipedia.org/wiki/Vector_quantization.

[2] K. Kobayashi, M. Kinoshita, M. Takeuchi, H. Onodera, K. Tamaru, "A Memory-based Parallel

Processor for Vector Quantization," in Solid-State Circuits Conference, 1996. ESSCIRC '96.,

1996.

[3] "Vector quantization," [Online]. Available:

http://www.mqasem.net/vectorquantization/vq.html.

[4] "Vector Quantization," [Online]. Available: http://www.data-compression.com/vq.html.

[5] Y. Linde, A. Buzo, and R. M. Gray, "An algorithm for vector quantizer design," IEEE Trans.

Commun., Vols. COM-28, pp. 84-95, 1980.

