
HPC 2012 Final Project

Implementing the QR Factorization
in Parallel

Authors:

Jacqueline Bush

Paul Torres

December 21, 2012

i

Contents

1 Introduction 1

2 Background 1

2.1 Basics on QR Decomposition . 1

2.2 Why QR? . 2

2.2.1 Least Squares and QR Factorization 3

2.2.2 The QR Algorithm . 4

2.3 QR Factorization in Serial . 5

2.3.1 Modified Gram Schmidt . 5

2.3.2 Givens Rotations . 7

2.3.3 Householder Reflections . 8

3 WY Implementation 9

3.1 Performance: Naive Householder QR Implementation vs WY House-

holder QR Implementation . 11

4 Tiled QR Factorization: Version 1 12

4.1 Implementation . 15

5 Tiled QR Factorization: Version 2 16

6 Blocked QR Performance: 20

7 Conculsion 25

8 Andreas’s Questions = ANSWERED 27

ii

List of Algorithms

2.1 The QR Algorithm (without shifts) . 4

2.2 Modified Gram-Schmidt . 6

2.3 Givens QR Factorization . 8

2.4 Householder QR Factorization . 9

3.1 Computes matrices W and Y such that Q = I + WY T in Householder

QR Factorization . 11

3.2 vk = House(x) Computes Householder Vector. 11

4.1 Tiled QR Factorization: Version 1 . 13

5.1 Tiled QR Factorization: Version 2 . 19

iii

1 Introduction

We explore the use of OpenMP to create an optimized QR matrix factorization algo-

rithm. A combination of tiling of the input matrices and the computation of House-

holder reflectors utilizing what is known as the ”WY” representation yields improved

performance over a naive Householder algorithm. The attractiveness of the WY algo-

rithm stems from its lower memory cost and slightly better performance even if the

complexity is similar.

The WY algorithm works best upon small matrices of a fixed size. Because of the

small size of the submatrices, and despite the fact that certain steps require matrix mul-

tiplication and transposition of them, further tiling of submatrices for multiplication–in

the manner of class assigment #6–caused performance to suffer. This in retrospect is

unsurprising, yet it was initially unanticipated. Finally we explored two approaches

yielding successively better performance in the manner in which the submatrices of the

input matrices are accessed and updated.

2 Background

2.1 Basics on QR Decomposition

In linear algebra, a QR decomposition of a matrix is a decomposition of a matrix

A ∈ Cm×n into a product

A = QR (2.1)

1

where Q ∈ Cm×m is a unitary orthogonal matrix and R ∈ Cm×n is an upper triangular

matrix. Since Q is unitary

det(Q) = ±1 and Q∗Q = I.

If m ≥ n then R has the following form,

R =

∗ ∗ ∗ · · · ∗ ∗ ∗

0 ∗ ∗ · · · ∗ ∗ ∗

0 0 ∗ · · · ∗ ∗ ∗
...

...
...

. . .
...

...
...

0 0 0 · · · ∗ ∗ ∗

0 0 0 · · · 0 ∗ ∗

0 0 0 · · · 0 0 ∗

0 0 0 · · · 0 0 0

0 0 0 · · · 0 0 0

=

R̂
0

 .

The factorization

A = Q̂R̂ (2.2)

Q̂ ∈ Cm×n and R̂ ∈ Cn×n is called the reduced QR factorization.

2.2 Why QR?

QR decompositions can be used for many things; they can be used to find other matrix

factorizations, such as SVD, to find the eigenvalues and eigenvectors of the matrix A,

they can be used to solve the least squares problem and they are a fundamental part

2

of the QR algorithm.

2.2.1 Least Squares and QR Factorization

One example of how QR factorizations are used is the least squares problem,

min
x∈Rn
||Ax− y||22. (2.3)

Suppose we know the QR factorization of A ∈ Cm×n, i.e. A = QR. Since the least

squares problem doesn’t make sense if A is under determined, without loss of generality

we can assume that m ≥ n. Then (2.3) reduces to

min
x∈Rn
||Ax− y||22 = min

x∈Rn
||QRx− y||22

= min
x∈Rn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Q
R̂

0

x− y
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

= min
x∈Rn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Q

R̂

0

x−Q∗y

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

= min
x∈Rn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
R̂

0

x−Q∗y
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

(2.4)

3

Since Q is unitary ||Qx||22 = ||x||22. Now suppose Q∗y =

c1
c2

 where c1 = Q̂∗y ∈ Cn,

c2 ∈ Cm−n and plug into (2.4) to get

min
x∈Rn
||Ax− y||22 = min

x∈Rn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
R̂

0

x−
c1
c2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

= min
x∈Rn

(
||R̂x− c1||22 + ||c2||22

)
(2.5)

Clearly the minimum of (2.5) occurs when R̂x = c1. So,

min
x∈Rn
||Ax− y||22 = ||c2||22. (2.6)

Hence by finding a QR decomposition of A we have reduced the least squares problem

to solving the upper triangular linear system

R̂x = Q̂∗y. (2.7)

2.2.2 The QR Algorithm

The QR algorithm is the most widely used algorithm for finding eigenvalues of small

and dense matrices. It is also a stable way of finding QR factorizations of matrix powers

A2, A3, · · · . Consider the most basic version of the QR Algorithm,

Algorithm 2.1 The QR Algorithm (without shifts)

A(0) = A
for k = 1, 2, · · · do
Q(k)R(k) = A(k−1)

A(k) = R(k)Q(k)

end for

Under suitable assumptions, this simple algorithm converges to a shur normal form

4

T for the matrix A, where A = UTUT , U unitary, T is upper triangular if A is arbitrary,

diagonal if A is hermitian. Since the Shur form T is similar to the original matrix A it

has the same eigenvalues. These eigenvalues are the elements in the diagonal of T .

Notice that the QR algorithm without shifts has two basic procedures. It first factors

A into its QR factorization, a O(n3) operation count. It then multiplies R and Q, also

an O(n3) operation count if carried out naively. For this reason the QR algorithm is

not generally used on large matrices. By performing QR factorization in parallel we

can speed up this algorithm allowing it to become feasible for larger matrices.

2.3 QR Factorization in Serial

To compute a QR decomposition of a matrix A sequentially the standard approach is

to either use the Modified Gram-Schmidt algorithm or to apply Orthogonal Transfor-

mations such as Givens Rotations or Householder Reflections.

2.3.1 Modified Gram Schmidt

Let ai denote the ith column of A, let qi denote the ith column of Q, and as usual let

rij denote the element in the (i, j) position in R. Finally let vi denote the ith column

of Q before it is normalized. Suppose q is an orthogonal normalized vector. Then

Pq = qq∗ (2.8)

is an rank one orthogonal projector that isolates the component in the q direction. The

complement of Pq,

P⊥q = I − qq∗ (2.9)

5

is a rank m− 1 orthogonal projector that eliminates the component in the direction of

q. Let,

Pj = P⊥qj−1
· · ·P⊥q2P⊥q1 (2.10)

with P1 = I. The modified Gram Schmidt algorithm is based on the following equation,

vj = P⊥qj−1
· · ·P⊥q2P⊥q1aj. (2.11)

If (2.11) is applied sequentially we get,

v
(1)
j = aj

v
(2)
j = P⊥q1v

(1)
j = v

(1)
j − q1q∗1v

(1)
j

v
(3)
j = P⊥q2v

(2)
j = v

(2)
j − q2q∗2v

(2)
j

...
...

...

vj = v
(j)
j = P⊥qj−1

v
(j−1)
j = v

(j−1)
j − qj−1q∗j−1v

(j−1)
j

This process is illustrated in the modified Gram Schmidt pseudo code given below.

Algorithm 2.2 Modified Gram-Schmidt

for i = 1 to n do
vi = ai

end for
for i = 1 to n do
rii = ||vi||
qi = vi/rii
for j = i+ 1 to n do
rij = q∗i vi
vj = vj − rijqi

end for
end for

6

If A ∈ Cm×n then this algorithm has an O(mn2) operation count. The main disad-

vantage of the modified Gram Schmidt algorithm is that it is susceptible to precision

problems in which the columns of Q are not orthonormal.

2.3.2 Givens Rotations

Givens Rotations act on only two rows at a time. So they can be described by a matrix

of the form

G =

 s1 s2

−s2 s1

where s21 + s22 = 1. Notice that G is orthogonal, since GG∗ = I and detG = 1. Also

notice that for any vector x =

x1
x2

 ∈ C2,

Gx =

||x||
0

 if s1 =
x1
||x||

, and s2 =
x2
||x||

A succession of Givens rotations on varying pairs of rows is applied to A to reduce

A to upper triangular form R. Observe that only one element is zeroed out on each

application of a givens rotation.

7

Algorithm 2.3 Givens QR Factorization
Q = I; R = A
for i = 1 to n do

for k = i+ 1 to m do
s1 = rii and s2 = rki
if s2 6= 0 then
s =

√
s21 + s22 = ||(s1, s2)||2

s1 = s−1s1 and s2 = s−1s2(
e∗iR
e∗kR

)
=

(
s1 s2
−s2 s1

)(
e∗iR
e∗kR

)
Givens rotation on rows i, k(

e∗iQ
e∗kQ

)
=

(
s1 s2
−s2 s1

)(
e∗iQ
e∗kQ

)
Givens rotation on rows i, k

end if
end for

end for

This algorithm runs in O(mn2) flops. In general Givens QR factorization is easier to

program then Householder QR factorization but, unless A is sparse, tends to perform

slower.

2.3.3 Householder Reflections

Householder Reflections are special unitary matrices Qi such that Qn · · ·Q2Q1A = Q∗A

is upper triangular. Qi has the form,

Qi =

I 0

0 Pi

 (2.12)

where

Pi = I − 2
viv
∗
i

v∗i vi
(2.13)

8

and

vi = sign(aii)||Ai:m,i||2e1 + Ai:m,i. (2.14)

This allows each Qi to zero out all on the elements in the ith column of A below the

diagonal.

Algorithm 2.4 Householder QR Factorization

for k = 1 to n do
x = Ak:m,k

vk = sign(x1)||x||2e1 + x
vk = vk/||vk||2
Ak:m,k:n = Ak:m,k:n − 2vk(v∗kAk:m,k:n)

end for

This algorithm runs in O(2n2m − 2n3

3
) flops. In general this algorithm runs faster

then Givens algorithm, it is also more stable then Gram-Schmidt. We use a version of

this algorithm later in our code.

3 WY Implementation

Notice that if we want to obtain a QR factorization via householder reflections as

given earlier (algorithm 2.3.3) we have an unfavorable ratio of vector loads and unloads

compared to actually computation. Also notice that we would need to do additional

n matrix multiplications to recover Q bringing to the operation count of the naive

householder QR algorithm to O(2n2m − n3/3). To solve this problem we represent

products of Householder matrices,

Qk = P1 · · ·Pk

9

in the form

Qk = I +WkY
T
k

where Wk and Yk are n by k matrices and

Pi = I − βvivTi , β = − 2

vTi vi
.

is a rank one update. Then

QT
kA = (I + YkW

T
k)A = A+ YkW

T
k A

and

Qk = Qk−1Pk = (I +Wk−1Y
T
k−1)(I − βvkvTk)

= I +Wk−1Y
T
k−1 − βQk−1vkv

T
k

= I +

(
Wk−1 −βQk−1vk

)Y T
k−1

vTk

= I +

(
Wk−1 −βQk−1vk

)(
Yk−1 vk

)T

⇒ Wk =

(
Wk−1 −βQk−1vk

)
and Yk =

(
Yk−1 vk

)
.

From this we generate the following algorithm.

10

Algorithm 3.1 Computes matrices W and Y such that Q = I +WY T in Householder
QR Factorization

Initialize W ∈ Rm×n and Y T ∈ Rn×m as zero matrices.
for k = 1 to m do
ak = (I +WY T)Tak, i.e ak = QT

k−1ak skip if k = 1.
vk = House(ak)
z = −2(I +WY T)vk
W =

(
W z

)
i.e replace kth zero column with z.

Y T =

(
Y
vk

)
i.e. replace kth zero row with vk.

end for

where

Algorithm 3.2 vk = House(x) Computes Householder Vector.

vk(i) = 0 if k < i, and vk(i) = x(i) if k ≥ i.
vk = sign(xk)||x||2ek + x
vk = vk/||vk||2

This code runs in O(2n2m − n3/3) flops, approximately the same number of flops

as the previous algorithm however the ratio of loading and unloading blocks to actual

computation is better.

3.1 Performance: Naive Householder QR Implementation vs

WY Householder QR Implementation

To check that the WY householder QR implementation is an improvement over the

regular householder implementation we ran both codes over the same square matrices

of size n on a node of Bowery and plotted the results in terms of GFlops per second.

11

Observe that for any size the WY implementation is faster than the navie householder

implentation. For this reason we use the WY implentation to calculate the QR factor-

ization on blocks. Also notice that the WY code is optimized with block size 8. This

implies that our Tiled QR algorithms should be run with block size 8 not 16 (as we

initially thought). We investigated this further later in the paper.

4 Tiled QR Factorization: Version 1

Recall that the goal of this paper is to implement QR factorization in parallel. In class

we saw that one way to preform matrix matrix multiplication in parallel is to tile the

matrices A and B. Using the tiled matrix matrix multiply algorithm as inspiration we

created a tiled QR factorization algorithm. Our idea is demonstrated in the pseudo

code below.

12

Algorithm 4.1 Tiled QR Factorization: Version 1
Q = I
for k = 1 to min(hn = number of blocks in column, wn = number of blocks in row)
do

for i = k + 1 to hn do

Preform QR factorization on

[
Akk

Aik

]
to get

[
Rkk

0

]
and Qik

Update Q matrix
OMP PARALLEL FOR LOOP:
for j = k + 1 to wn do

Factor out Qik from

[
Akj

Aij

]
to get

[
Bkj

Bij

]
.

end for
end for
if k = hn− 1 and hn = min(hn,wn) then

Preform QR factorization on Akk, resulting in Qkk and Rkk

Update Q
OMP PARALLEL FOR LOOP:
for j = k + 1 to wn do

Factor out Qkk from Akj to get Bkj.
end for

end if
end for

Where for block size b, Aij ∈Mb×b(C), Qii ∈Mb×b(C), Qij ∈M2b×2b(C) and Qij is a

unitary matrix. To understand why this algorithm works mathematically we consider

13

a 3 by 4 blocked matrix A.

A =

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

=

(Q12)11 (Q12)12 0

(Q12)21 (Q12)22 0

0 0 I

B11 B12 B13 B14

0 B22 B23 B24

A31 A32 A33 A34

=

(Q12)11 (Q12)12 0

(Q12)21 (Q12)22 0

0 0 I

(Q13)11 0 (Q13)12

0 I 0

(Q13)21 0 (Q13)22

R11 R12 R13 R14

0 B22 B23 B24

0 B32 B33 B34

=

(Q12)11 (Q12)12 0

(Q12)21 (Q12)22 0

0 0 I

(Q13)11 0 (Q13)12

0 I 0

(Q13)21 0 (Q13)22

I 0 0

0 (Q23)11 (Q23)12

0 (Q23)21 (Q23)22

R11 R12 R13 R14

0 R22 R23 R24

0 0 B33 B34

=

(Q12)11 (Q12)12 0

(Q12)21 (Q12)22 0

0 0 I

(Q13)11 0 (Q13)12

0 I 0

(Q13)21 0 (Q13)22

I 0 0

0 (Q23)11 (Q23)12

0 (Q23)21 (Q23)22

I 0 0

0 I 0

0 0 Q33

R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

Clearly

R =

R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

14

is an upper triangular matrix. So we just need to check that

Q =

(Q12)11 (Q12)12 0

(Q12)21 (Q12)22 0

0 0 I

(Q13)11 0 (Q13)12

0 I 0

(Q13)21 0 (Q13)22

I 0 0

0 (Q23)11 (Q23)12

0 (Q23)21 (Q23)22

I 0 0

0 I 0

0 0 Q33

=Q1Q2Q3Q4

is unitary. Notice that each Qi is unitary. Hence

Q∗Q = (Q1Q2Q3Q4)
∗Q1Q2Q3Q4

= Q∗4Q
∗
3Q
∗
2Q
∗
1Q1Q2Q3Q4

= I

In other words Q is unitary and our algorithm successfully finds a QR factorization of

A.

4.1 Implementation

While on the surface our algorithm appears to have only two sub functions, performing

QR factorization on a block and factoring out the Q from the other blocks in the row,

the second operation can be broken down into two more basic sub functions. Since Q

is unitary if

A = QR then Q∗A = R.

So our algorithm really needs three main sub functions, WY QR factorization, matrix

transpose and matrix matrix multiply.

Notice that the majority of the work in this algorithm is done by matrix multi-

plication. After WY performs we need to update both the rows to the right of the

15

column being operated on as well as the relevant columns of the matrix Q. Both up-

dates require matrix multiplication. So it makes sense when optimizing BlockedQR to

first optimize matrix matrix multiplication. For this reason we initially wrote tiled QR

version one using a blocked matrix matrix multiplication subprogram. However when

we ran perf we found that eighty percent of the work was being done blocking and

unblocking submatrices. In addition we realized that because we picked blocked size

16 to optimize the WY code, blocking the matrix multiply code was pointless. So we

replaced the blocked matrix matrix multiply code with the simple three loop version.

To take advantage of pipelining in the matrix multiplication code we ordered the loops

j, k, i.

5 Tiled QR Factorization: Version 2

Version two of our tiled QR algorithm introduces parallelization on the column updates,

i.e. when we zeroed out blocks below the diagonal. However unlike the row updates

that version one introduced, zeroing out blocks below the diagonal can not be done

fully in parallel. To get around this we broke the blocks in the column into groups

made up of succesively smaller 2p blocks as shown in the diagram below.

16

Figure 1: This diagram denotes one column being broken up and zeroed out over
multiple iterations. Notice that the each green set consists of the largest power of two
number of blocks of those blocks in the column remaining to be zeroed out.

We zero out (or merge) each green set using a binary tree. Each level of the binary

tree is zeroed out in parallel as see in the diagram below.

17

Finally we update the block k of the column, zeroing out the root of each binary

tree below block k.

Figure 2: Note: The first block in this example is block k.

Repeating this procedure for each column yeilds the algorithm given below.

18

Algorithm 5.1 Tiled QR Factorization: Version 2
Q = I
for k = 1 to min(hn,wn) do

Initialize variables: boundary = k
while boundary < hn do

Compute the largest c such that for an integer p, c = 2p < hn - boundary + 1
Initialize variables c1 = 1 and c2 = 2.
while c2 ≤ c do

OMP PARALLEL FOR LOOP:
for i = boundary; i < boundary +c− c1 ; i+ = c2 do

Preform QR factorization on

[
Ai,k

Ai+c1,k

]
to get

[
Ri,k

0

]
and Qi,i+c1

Update Q matrix
OMP PARALLEL FOR LOOP:
for j = k + 1 to wn do

Factor out Qi,i+c1 from

[
Aij

Ai+c1,j

]
to get

[
Bij

Bi+c1,j

]
.

end for
end for
Update variables c1∗ = 2, c2∗ = 2.

end while
if boundary > 0 and k 6=boundary then

Preform QR factorization on

[
Ak,k

Aboundary,k

]
to get

[
Rk,k

0

]
and Qk,boundary

Update Q matrix
OMP PARALLEL FOR LOOP:
for j = k + 1 to wn do

Factor out Qk,boundary from

[
Akj

Aboundary,j

]
to get

[
Bkj

Bk,boundary

]
.

end for
end if
boundary += c

end while
if k = hn− 1 and hn = min(hn,wn) then

Preform QR factorization on Akk, resulting in Qkk and Rkk

Update Q
OMP PARALLEL FOR LOOP:
for j = k + 1 to wn do

Factor out Qkk from Akj to get Bkj.
end for

end if
end for

19

Notice the only difference between version 1 and version 2 is order that the blocks

below the diagonal are zeroed out. Hence mathematically they are the same and since

version one correctly performs QR decomposition, so will version two.

6 Blocked QR Performance:

In the preformance section on WY we saw that the optimal block size was 8 by 8.

However in homework 6 we saw that the optimal block size to use the full C1 cache size

was 16 by 16. We plotted the GFlops per second required to run Blocked QR version

2 for both blocked sizes on Bowery to see which block size optimizes our algorithm.

As you can see the block size b = 8 is clearly faster than the blocksize b = 16.

This seems to mean that the code is dominated by the WY algorithm, not the matrix

multiplication, even though perf tell us that most of the time is being spent in matrix

multiplication. For the rest of our preformance study we will use block size equal to

eight.

20

Next we compared version one to version to see what performance improvement if

any we get from updating version one with more parallelization.

Observe that for m ≥ 1000 version two becomes significantly better than version

one in terms of seconds on Bowery. To compare performance in terms of GFlops per

second we look at the next graph.

21

From this graph we see that version two either performs better or the same as

version one. This makes sense because we are doing the same amount of work in both

versions. The second version simply performs faster in general then the first. Hence

updating version one with additional parallelization is an worth while update.

Now we consider the scaling measurement. The following list the time in seconds

and the GFlops per second required to run Blocked QR version two over a different

number of threads for a 2,048 by 2,048 matrix.

SCALING MEASUREMENTS:

Number of threads time (s) Glfps

1 238.951351 0.035948466

2 273.221443 0.03143946

3 227.997841 0.037675508

4 210.125298 0.040880059

5 198.128890 0.043355286

6 189.512168 0.04532656

7 186.347311 0.04609637

8 188.394108 0.045595559

The addition of more threads aids the performance of our code but not by much, at

least for very large 2048x2048 matrices. Perhaps we would have seen different numbers

for smaller matrices or other combinations of m and n.

22

Finally, we consider and compare against LAPACK time and rate measurements.

First we present two plots of LAPACK alone under various combination of m and n

in terms of time and rate followed by 3 plots of the second QR algorithm compared

against LAPACK.

23

24

These plots show that LAPACK across the board outperforms our implementation of

the QR algorithm, except with regards to one case, where m = 8. This anomaly is most

likely a result of some error in methodology or measurement as it is highly doubtful

that we could have outperformed such a well-honed linear algebra library.

7 Conculsion

Further work could explore implementing an alternative algorithm that is optimized for

tall skinny matrices (m far greater than n) and employed selectively depending upon

the input. On the hand, the implementation does work relatively well for fat short

matrices (m far less than n), and this is because when the input matrices are short

and fat, updating Q is always a lot less work. The first version of our QR algorithm

had poor performance for tall, thin matrices, which inspired the second QR algorithm,

whose performance shows improvement for large values of m and small values of n.

Within the current implementation alone, a bottleneck exists in which the workload

25

is not evenly distributed amongst threads. In retrospect it would not be too difficult

to modify the binary tree algorithm so that the first tree is at least not monstrously

larger than all the subsequent trees assigned to other threads. Ideally, it would be nice

if all the trees could be of about the same size.

An additional use of blocking in a second layer between the input matrices and the WY

algorithm could prove beneficial if the individual tiles were of a size targeted for L2

cache. At the moment there is no targeting of the L2 cache at all, but only L1 cache

through the optimization of the size of submatrices fed to the WY algorithm.

26

8 Andreas’s Questions = ANSWERED

Note: Most of these (if not all) are answered in the main report. We just didn’t want

you to miss the answers.....

1. What are you doing? Revelvant liturature?

� We are preforming a QR factorization on a random matrix A. Check Refer-

ences.

2. What is the scale of the problem you are aiming for? Liminatations?

� Our code performs for matrices smaller than 5000 by 5000. However for

matrices smaller than 130 by 130 perf reports that most of the work in

BlockedQR2 is being done by the OMP library. If the matrix is bigger than

5000 it might crash. On the virtual machine the 5000 by 5000 case ran in

2451.923687 s or approximately 40 minutes.

3. Describe existing work/software on your topic. What codes if any did you look

at?

� Since QR decompositions are useful for computing harder problems such as

least square, alot of work has already been done on this problem. There

are QR implementations in Lapak, Plasma, and Flame to name a few linear

algebra libraries. We studied a paper describing the implementation of Tiled

QR factorization in Plasma. We also looked at the code in Lapak but gave

up because we couldn’t figure out what they were doing.

4. Performance expectations: What was the most time consuming step?

� In the performance study on WY. We saw that WY was optimized by block

size b = 8. In hw 6 we saw that matrix multiplication was optimized by

27

block size 16. We thought that the matrix multiplication part of our code

was the most time consuming step. However in the BlockedQR Performance

section we saw that the code preformed better with block size 8. Hence the

WY section of our code must be the most time consuming.

5. Performance expectations: Which is the hardest to parallelize?

� When we began to work on a tiled version of QR factorization. Applying

the row updates in parallel was obvious. However performing the updates

along the column was much harder. - See section Tiled QR : Version 2 for

more information.

6. Performance expectations: Relate this to your scaling discussion?

� By figuring out how to run both the row and column updates in parallel we

were able to compute QR factorizations for larger matrices. For instance if

we compute the QR factorization for a 1000 by 1000 matrix in version one on

the virtual machine it takes around 45 seconds. However when we compute

the QR factorization for the same size matrix in version 2 it only take around

25 seconds. Hence we have cut the time in two by adding another layer of

parallelization.

7. Describe Preformance and scaling measurements.

� We discussed the performance of each version, WY, Version One and Ver-

sion Two in their respective performance section in the paper. Scaling was

discussed for both version one and version two.

8. Where and how have you made your code available?

28

� We have made it available in the forge respository and it will be on github

shortly after submission at git://github.com/pat227/hpc12-fp-jbb383-pat227.git.

9. Instructions on how to build and run your code.

Provided you have all the sublibraries, makefile, and headers (there are quite a

few) our code compiles on any platform (we think). It definitely runs on Bowery

and in linux... Calling make will build our code. Now you have four options for

running our code. They all have the same arguments m = height of matrix, n =

width of matrix, iterations = how many times you want to repeat code (normally

1), test = 0 if you don’t want to test code, test= 1 if you want to test code. Note:

If you run the code with test on, the test run time is included in the timing of

the code.

./householder m n iterations test, will run the navie householder case by itself ./wy

m n iterations test, will run the wy case by itself ./BlockedQR m n iterations test,

will run Tiled QR version 1 ./BlockedQR2 m n iterations test, will run Tiled QR

version 2

You can enter any m or n.

29

