
3D Real-time Reconstruction

Jiakai Zhang, Hao Liu, Yu Xu

New York University

Contents
1. Introduction ... 2

1. Input raw data – depth Image .. 2

2. Noise reduction – bilateral filtering (Jiakai Zhang) ... 3

2.1 Describe .. 3

2.2 Scale .. 4

2.3 Performance ... 4

3. Measurement compute - surface vertex and normal map (Jiakai Zhang) .. 4

4. Coloring the vertices and Phong shading (Jiakai Zhang) ... 5

5. Camera Pose Estimation – ICP (Yu Xu, Jiakai Zhang, Hao Liu) .. 6

5.1 Describe .. 6

5.2 Scale .. 6

5.3 Performance ... 7

6. Update reconstruction – TSDF (Hao Liu, Jiakai Zhang) ... 8

6.1 Describe .. 8

6.2 Scale .. 9

6.3 Performance ... 9

7. Surface prediction – Ray casting (Jiakai Zhang, Hao Liu) .. 9

7.1 Describe .. 9

7.2 Performance ... 10

8. Intergrade the whole pipeline (Jiakai Zhang, Hao Liu, Yu Xu) ... 10

9. Code release .. 11

9.1 OpenNI SDK for Kinect .. 11

9.2 OpenCV SDK .. 11

9.3 OpenGL SDK .. 11

9.4 CUDA SDK .. 11

1. Introduction
We want to re-implement the paper1 from Microsoft Research to reconstruct the cloud points of the

whole indoor scene using Kinect. The pipeline is as follow. Each step will be described separately.

1. Input raw data – depth Image
The Figure 1 shows the raw data from Kinect which is RGB Image and Depth Image.

Figure 1 the Raw Data

The Kinect Camera has 30 FPS. The resolution for the depth image is 640 by 480. The two main

problems of the raw depth map are noise and imperfect. Specifically, the depth data is missing at the edge

of objects.

1
 Richard A Newcombe, Shahram Izadi, Otmar Hilliges et al. KinectFusion : Real-Time Dense Surface Mapping and Tracking. IEEE

International Symposium on Mixed and Augmented Reality, 2012

Input Raw Data
Depth Image

Noise Reduction
Bilateral
Filtering

Measurement
Compute

Surface Vertex
and Normal Map

Camera Pose
Estimation

Iteration Cloest
Points (ICP)

Update
Reconstruction

Volumetric
Truncated

Signed Distance
Function (TSDF)

Surface
Prediction

Ray-cast

2. Noise reduction – bilateral filtering (Jiakai Zhang)
The raw depth data from the Kinect is pretty noisy. It’s hard to use for camera tracking. If we apply the

Phong-shading to represent the normal map, the noisy normal vectors make the objects irregularity.

Figure 2 Normal Map - no bilateral filtering

Thus we implement a bilateral filtering
2
 which is used to smooth the depth image and remove noise while

still preserving edges. The details of this algorithm shows on this Web Page.

2.1 Describe
The main numerical formula is as following:

,

,

(,) (, , ,)
(,)

(, , ,)

i j

i j

D x y w x y i j
g x y

w x y i j




Which the (, , ,)w x y i j is

22 2

2 2

(,) (,)() ()
(, , ,) exp()

2 2d r

D x y D i jx i y j
w x y i j

 

  
  

Function (,)D x y is the depth value of the pixel position (x, y). Function c returns a weight based on the

distance from the center of the filter. Function returns a weight based on the similarities of the two depth

values. Pixels that are closest to the center of the filter and are similar to the center depth value receive a

higher weight. The (i, j) pairs indicate the filter radius. The filter radius is 1which means the rang of (i, j)

is [-1, 0, 1]. Thus the center (x, y) has 8 neighbors.

Because we know the range of Euclidean distance
2 2() ()x i y j   .To accelerate computing, the

Gaussian kernel for Euclidean distance between center and neighbors can be pre-computed. When we use

them, we just look up the data by neighbor ID.

2
 C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images", Proceedings of the 1998 IEEE International

Conference on Computer Vision, Bombay, India.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

2.2 Scale
The pre-processing image is 640x480x1=307200. We create 16x16 threads per block and 40x30 blocks to

parallelize filtering.

To accelerate the reference of the neighbors, we adopt the texture memory. The filtering can benefit from

textures because calculations are generally performed in pixels where local weighted sum are considered,

and neighbor pixels need to access each other’s depth value. A spatially local cache works better for this

than a simple linear memory cache. What’s more, we’d like to run the filter k times.

2.3 Performance
The table 1 shows the runtime of bilateral filtering.

 1 2 3 4 5

Iterantions_num 1 1 1 2 2

Guassian_delta 10 5 10 10 10

Euclidean_delta 11 20 11 11 11

Filter_radius 1(9 cells) 1(9 cells) 2(25 cells) 1(9 cells) 2(25 cells)

Run Time

(GPU)/ms
18.71 18.66 49.01 37.41 98

Run Time

(CPU)/ms
23 23 54 47 112

Table 1 Run time of bilateral filtering

The figure 3 shows the result by choosing different parameters of filtering. The image order is the same as

the table.

Figure 3 bilateral filtering process results

3. Measurement compute - surface vertex and normal map (Jiakai Zhang)

Given the intrinsic calibration matrix K (of the Kinect infrared camera), a specific depth measurement is

projected as a 3D vertex in the camera’s coordinate space as follows;

1() () (,1), (,)v D x y u u K u u

The K matrix should be like

1/ 0 0

0 1/ 0

0 0 1

f

K f

 
 
 
  

, but actually in case of the specific Kinect camera,

the projected matrix K should be revised. Thus the final 3D position of vertices is calculated by the

following equation:

. (. .)* () / .

. (. .)* () / .

. ()

v x u x c x D f x

v y u y c y D f y

v z D

 


 
 

u

u

u

By using neighboring re-projected vertices, we can calculate the normal vectors.

() () ()i jv dv dv u u u

The process time of surface vertex (640x480x1=307200) and normal map (640x480x1=307200)

computing via GPU is 1.8ms, which that via CPU is 55ms.

4. Coloring the vertices and Phong shading (Jiakai Zhang)

By using the RGB image from the Kinect, we set the color of all vertices and implemented the Phong

shading. The following figure 4 shows the effect of different light positions and colors. The main problem

is to find the corresponding color value for each vertex. It can be seen as camera calibration problem. The

figure 4 shows the result of coloring and Phong shading.

Figure 4

Even though the OpenGL programming is not a parallel part, it’s very useful for debugging and data

visualization. And it’s also time-consuming to implement. More specifically, it contains a virtual trackball

implantation, lighting, vertices object buffer for rendering, and CUDA graphics map resources and so on.

5. Camera Pose Estimation – ICP (Yu Xu, Jiakai Zhang, Hao Liu)
The input of ICP is the consecutive cloud points and normal vectors in different frames. The output is the

6DOF transformation matrix T which indicates the pose of camera.

5.1 Describe
Iterative closet Point Algorithm has multiple versions. According to the features of Kinect Data which is

small differences between consecutive frames and the available data of normal vectors, the projective data

association is better to find the correspondence points (ICP)
3
. The details are as following:

We set the first frame correspond to the global coordinates so other frames should align to the first frame.

So we align points of the kth frame to points of (k-1)th frame, align points of the (k-1)th frame to points

of the (k-2)th frame….align points of the 2nd frame to points of 1st frame. Then every frame will be

aligned to the first frame.

In order to align two frames, we need to find corresponding points between two frames. We need a rule to

find corresponding points so that the energy function converges well. Once we have found corresponding

points, we need to generate a transform matrix by these points. After finding the corresponding oriented

points, we should minimize the point-to-plane error metric (Energy Function)
4
, defined as the sum of

squared distances between each point in the current frame and the tangent plane at its corresponding point

in the previous frame.

, , 1 1

() 2

ˆ ˆˆ ˆ() (() ()) ()T

g k g k k k k

null

E T T V V N 

 

 
u

u u u

So we encounter a nonlinear least square problem. We should transform this problem to linear least

square problem by approximation so that we can solve it quickly and update our data real time. The

contradiction is if we choose all points to solve least square problem by SVD, it will cost a lot of time so

that we cannot do “real time” updating our data. If we choose fewer points, we can solve least square

problem fast but we cannot get satisfactory transform matrix to align two frames well. How to make it?

We need find a balance. As the optimized method mentioned in [4], it can solve as a 6-by-n linear system

using SVD algorithm (solve on CPU).

5.2 Scale
We need to check 640x480=307200 pairs of points and solve 6-by-n linear system, which n is around

2000.

3
 S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. 3D Digital Imaging and Modeling, Int. Conf., 2001

4
 K. Low. Linear least-squares optimization for point-toplane ICP surface registration. Technical report, TR04- 004, University of

North Carolina, 2004

5.3 Performance
The figure shows the results of ICP. The two images are obtained from two different viewports but the

same scene.

Before ICP (Error: 1102.125)

The 1
st
 iteration (Error 238.798 Time on CPU/GPU: 8ms/2 ms)

The 2
nd

 iteration (Error 65.941 Time on CPU/GPU: 5ms/1ms)

The 3
rd

 iteration (Error 39.241 Time on CPU/GPU: 6ms/2ms)

The 4
th

 iteration (Error 13.628 Time on CPU/GPU: 7ms/2ms)

6. Update reconstruction – TSDF (Hao Liu, Jiakai Zhang)
Once we know the position and rotation relations between frames, we can use TSDF to merge all frame

depth map into one. Here we use truncated signed distance function (TSDF) to save merged data. TSDF

actually a 3d tensor or I call it a cube, which represents the space we are measuring. The value of each

volume in the cube is the distance to closest surface. And this distance is signed and truncated. If the

volume is behind the surface in the view of camera, then we set distance a negative value. If the distance

between volume and surface is too long, then we set the distance equal to 1 or -1. We use truncation to

efficiently get parallel surfaces.

6.1 Describe
How to get TSDF cube?

(a) Compute local ‘cube’: for each frame we compute a ‘cube’ only from the depth map of this frame.

Actually, we compute this cube but not save it, compute one volume and then update it into global

cube. For each volume we find the corresponding point in the depth and use depth value as the

position of nearest surface.

(b) Update the global TSDF cube: when we obtained the local ‘cube’, we need to merge this cube into

global cube. We use weight merging instead of directly merging. We use two kind of weights: (i)

weights of different volumes in local cube are different, the volume near and in front of the camera

have high weight. (ii) weights of global cube and local cube are different, local cube has low weight

to avoid noise.

Here is the mathematic formula to compute local cube:

 () (
 || ||

 ())

 ̇

 ⌊ (
)⌋

 () {
 (

) ()

6.2 Scale

The size of TSDF cube is 256x256x256=16.7M as the same as the size of cube weight.

Difficulties in TSDF?

(a) The size of TSDF cube: we should trade between accuracy and GPU memory. The cube is a 3D

tensor, so its size increase very fast when we want to finer grid in our space.

(b) How to set the value of weight. This weight is very important in our TSDF merging process. A good

weight should be corresponding to the relative position of volume and camera and in the same time be

truncated for updating possible.

(c) It’s very difficult to debug, you cannot efficiently to output your result even in CPU. We use

Mathematics to output our zero contour surface of cube.

6.3 Performance
Threads/Block 8,8 8,8 16,16 16,16 32,32 32,32

Size of Cube 128,128,128 256,256,256 128,128,128 256,256,256 128,128,128 256,256,256

 GPU Time/ms 19.1 179.2 17.3 142.49 20.03 168.97

7. Surface prediction – Ray casting5 (Jiakai Zhang, Hao Liu)
After TSDF updating, we have the TSDF cube.

7.1 Describe
We’d like to choose the particular camera position to cast ray to the volume of the TSDF cube. If we find

the sign of the TSDF value changes, it means we find a point on the surface. And we calculate the normal

vector by calculating the gradient of TSDF at this point. The formula is as follow:

R
g ,k
N
k

= N
k

g (u) =n(ÑF(p)),ÑF = [
¶F

¶x
,
¶F

¶y
,
¶F

¶z
]T

5
 S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. Interactive ray tracing for isosurface rendering. In proceedings of

Visualization, 1998. 2.4, 3.4, 3.4

Some tricks in Ray casting:

(a) Two scales acceleration: Because our TSDF cube is truncated in distance, then we actually can use

as the ray casting step-size. And once we find the signed change, we change our step-size to our cube

precision and find the more accurate surface.

(b) Linear prediction: when we are on the signed change point in cube, instead of using the coordinate of

the volume, we can use two volumes to do a linear regression to predict the surface position.

7.2 Performance

Figure 5 Steps in Ray tracing

Figure 5 shows that ray marching steps are drastically reduced by skipping empty space according to the

minimum truncation (light color equals to 10 iterations and dark 50 = 6-8 speedup). Marching steps can

be seen to increase around the surface interface where the signed distance function has not been truncated.

Threads/Block 8,8 8,8 16,16 16,16 16,16 16,16 32,32 32,32

Size of Cube 128*3 256*3 128*3 128*3 256*3 256*3 128*3 256*3

Truncated Yes Yes Yes No Yes No Yes Yes

 GPU Time/ms 16.1 135.5 12.84 127.6 101.2 521.2 16.8 145.3

8. Intergrade the whole pipeline (Jiakai Zhang, Hao Liu, Yu Xu)
Currently, we are trying to integrate different parts. It’s the most time-consuming part in our project.

We’d like to finish it by

9. Code release
We’d like to keep the code private. Because we use CUDA language and Kinect, you need to have a

NVDIA graph card and Xbox Kinect to run the code. In this project, we use the NVDIA GTX 460M

graph card.

How to set up the environment?

9.1 OpenNI SDK for Kinect
Download and install the OpenNI SDK from the link. Do not plug in the Kinect before finish installing.

9.2 OpenCV SDK
Download and install the OpenCV SDK from the link.

9.3 OpenGL SDK
Download and install the OpenGL SDK (include glew) from the link.

9.4 CUDA SDK
Download and install the OpenGL SDK from the link.

http://www.openni.org/openni-sdk/
http://opencv.org/downloads.html
http://www.opengl.org/
https://developer.nvidia.com/cuda-downloads

