3D RECONSTRUCTION

Real-time 3D reconstruction in-door scene using moving Kinect Jiakai Zhang, Hao Liu, YuXu

Reconstruction method

- Reconstruction from images
- Reconstruction from video

Using Kinect

Raw Depth Image

- Infrared laser projector
- Monochrome CMOS sensor

Demo Kinect Raw data

Real-time Reconstruction

Bilateral Filtering

•
$$\mathbf{h}(\mathbf{x}) = k^{-1} \int_{\infty} \int_{\infty} \mathbf{f}(\xi) c(\xi - \mathbf{x}) s(\mathbf{f}(\xi) - \mathbf{f}(\mathbf{x})) d\xi$$

Pipeline

ICP 3D shape alignment

Figure 1: Point-to-plane error between two surfaces.

$$\hat{\mathbf{M}} = \mathbf{T}(t_x, t_y, t_z) \cdot \hat{\mathbf{R}}(\alpha, \beta, \gamma)$$

$$= \begin{pmatrix} 1 & -\gamma & \beta & t_x \\ \gamma & 1 & -\alpha & t_y \\ -\beta & \alpha & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$\mathbf{M}_{\text{opt}} = \arg\min_{\mathbf{M}} \sum_{i} ((\mathbf{M} \cdot \mathbf{s}_{i} - \mathbf{d}_{i}) \cdot \mathbf{n}_{i}) \quad \mathbf{M} = \mathbf{T}(t_{x}, t_{y}, t_{z}) \cdot \mathbf{R}(\alpha, \beta, \gamma)$$

$$\min_{\mathbf{M}} \sum_{i} ((\mathbf{\hat{M}} \cdot \mathbf{s}_{i} - \mathbf{d}_{i}) \cdot \mathbf{n}_{i})^{2} = \min_{\mathbf{x}} |\mathbf{A}\mathbf{x} - \mathbf{b}|^{2}.$$
 SVD

ICP 3D shape alignment

Pipeline

TSDF

Signed Distance Function

The value in the cube corresponds to the signed distance to the closest zero crossing(surface).

- Signed Distance Function
- Truncated Signed Distance Function

$$\begin{split} F_{R_k}(\mathbf{p}) &= \Psi\left(\lambda^{-1}\|(\mathbf{t}_{g,k} - \mathbf{p}\|_2 - R_k(\mathbf{x})\right)\,, \\ \lambda &= \|\mathbf{K}^{-1}\dot{\mathbf{x}}\|_2\,, \\ \mathbf{x} &= \left\lfloor\pi\left(\mathbf{K}\mathbf{T}_{g,k}^{-1}\mathbf{p}\right)\right\rfloor\,, \\ \Psi(\eta) &= \left\{\begin{array}{c} \min\left(1,\frac{\eta}{\mu}\right)\mathrm{sgn}(\eta) & \text{iff } \eta \geq -\mu\\ null & otherwise \end{array}\right. \end{split}$$

- Signed Distance Function
- Truncated Signed Distance Function
- Integrate the cubes from different position.

$$F_k(\mathbf{p}) = \frac{W_{k-1}(\mathbf{p})F_{k-1}(\mathbf{p}) + W_{R_k}(\mathbf{p})F_{R_k}(\mathbf{p})}{W_{k-1}(\mathbf{p}) + W_{R_k}(\mathbf{p})}$$

$$W_k(\mathbf{p}) = W_{k-1}(\mathbf{p}) + W_{R_k}(\mathbf{p})$$

21D Sample

Depth Map from Kinect

21D Sample

Depth Map from Kinect

7	0).2	0.05	0.5	1	1
-1	. C	8.0	-0.1	0.3	1	1
-1		1	-0.5	0.05	1	1
-1		1	-0.5	0.1	1	1
-1	- C	.8	-0.05	0.3	1	1
-1	-0.	5	-0.03	0.5	1	1

Integration

- We have depth maps from different camera positions, how can we integrate them together?
- Integration? or update?
- Weighted? or add up?
- What makes integration possible?

A		0.2	0.05	0.5	1	1
-1		8.0	-0.1	0.3	1	1
-1		1	-0.5	0.05	1	1
-1		1	-0.5	0.1	1	1
-1	-	8.	-0.05	0.3	1	1
-1	-().5	-0.03	0.5	1	1

Integration

- We have depth maps from different camera positions, how can we integrate them together?
- Integration? or update?
- Weighted? or add up?
- What makes integration possible?

7	0).2	0.05	0.5	1	1
-1	. C	8.0	-0.1	0.3	1	1
-1		1	-0.5	0.05	1	1
-1		1	-0.5	0.1	1	1
-1	- C	.8	-0.05	0.3	1	1
-1	-0.	5	-0.03	0.5	1	1

Integration

- We have depth maps from different camera positions, how can we integrate them together?
- Integration? or update?
- Weighted? or add up?
- What makes integration possible?

-1	•	0.2	0.05	0.5	1	1
-1		0.8	-0.1	0.3	1	1
-1		-1	-0.5	0.05	1	1
-1		1	-0.5	0.1	1	1
-1	-(.8/	-0.05	0.3	1	1
-1	-0).5	-0.03	0.5	1	1

- To get the surface behind the surface. The camera is moving!
- Only part of distance data is needed, so we can truncate the distance.

1 time update!

-0.3	•	0.2	0.05	0.5	1	1
-1		0.8	-0.1	0.3	1	1
-1		1	-0.5	0.05	1	1
-1		1	-0.5	0.1	<u>.</u> 1	1
-1	-(.8,	-0.05	0.3.	1	1
-1	- 0	5	-0.03	0.5	1	1

- To get the surface behind the surface. The camera is moving!
- Only part of distance data is needed to represent the object, so we can truncate the distance.

2 times update!

0	•	0.2	0.05	0.5	1	1
-1		0.8	-0.1	0.3	1	1
-1		-1	-0.5	0.05	1	1
-1		1	-0.5	0.1	<u>.</u> 1	1
-1	-(.8,	-0.05	0.3.	1	1
-1	-0).5	-0.03	0.5	1	1

- To get the surface behind the surface. The camera is moving!
- Only part of distance data is needed to represent the object, so we can truncate the distance.

3 times update!

0.3	•	0.2	0.05	0.5	1	1
-1		0.8	-0.1	0.3	1	1
-1		-1	-0.5	0.05	1	1
-1		1	-0.5	0.1	<u>.</u> 1	1
-1	-(.8,	-0.05	0.3.	1	1
-1	-0).5	-0.03	0.5	1	1

- To get the surface behind the surface. The camera is moving!
- Only part of distance data is needed to represent the object, so we can truncate the distance.

Pipeline

Measurement Noise Surface Update Compute Raw Depth Reduction Pose Prediction Reconstruction Image Estimation $T_{\rm gk}$ V_k, N_k V_k, N_k $R_{\rm k}$ S_k r_k

RAY CASTING

-1	-0.2	0.05	0.5	1	1
-1	-0.8	-0.1	0.3	1	1
-1	-1	-0.5	0.05	1	1
-1	-1	-0.5	0.1	1	1
-1	-0.8	-0.05	0.3	1	1
-1	-0.5	-0.03	0.5	1	1

Detect the sign change.

Two scales search

Linear regression

RAY CASTING

-1	-0.2	0.05	0.5	1	1
-1	-0.8	-0.1	0.3	1	1
-1	-1	-0.5	0.05	1	1
-1	-1	-0.5	0.1	1 1	
-1	-0.8	-0.05	0.3	1	1
-1	-0.5	-0.03	0.5	1	1

- Detect the sign change.
- Two scales search
- Linear regression
- Normal Vectors

Real-time Reconstruction

Reference

- [1] KinectFusion: Real-Time Dense Surface Mapping and Tracking. Microsoft Research
- [2] B. Curless and M. Levoy. A volumetric method for building complex models from range images.
- [3] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with CUDA. In H. Nguyen, editor, GPU Gems 3, chapter 39, pages 851–876. Addison Wesley, August 2007. 3.5
- [4] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the ICCV, 1998.
- [5] C. Rasch and T. Satzger. Remarks on the O(N) implementation of the fast marching method.
- [6] Y. Chen and G. Medioni. Object modeling by registration of multiple range images. Image and Vision Computing (IVC), 10(3):145–155,1992
- [7] Kok-Lim Low Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration

Thanks !!