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Abstract

The falling prices of 3D printers and 3D printing services have made rapid prototyping technologies increasingly accessible.
Artists and engineers skilled with a 3D modeling program can design shapes and have them cheaply, quickly, and easily
fabricated in a variety of materials. As this process becomes widespread, however, it is essential to develop tools to predict
the strength of the fabricated model; insufficiently reinforced models will break in the customer’s hands and might not
even survive the printing process. Such a tool should run fast enough not to discourage its use and ideally would provide
real-time feedback while the user is modeling. Although such interactive feedback is still out of reach, this paper discusses
how to accelerate various stages of an existing robustness prediction pipeline currently under development by James Zhou
and Denis Zorin.

1 Introduction

First, we briefly discuss a (over-)simplified view of the exist-
ing robustness prediction pipeline and the particular stages
that this paper will target for acceleration. The pipeline ac-
cepts a triangle mesh of the shape a user wishes to print. It
first converts this surface mesh into a 3D mesh made up of
tetrahedra:

Figure 1 Cut-away view of a tetrahedral mesh for a bar.

The pipeline then predicts how the model is likely to
deform, and for each of those deformations it computes the
corresponding internal force within each tetrahedron. If this
internal force exceeds some physically meaningful threshold,
the tetrahedron is predicted to break.

1.1 Predicting Deformations

Deformations of an object can be expressed as a function, φ,
mapping points on the undeformed object to the deformed

object. In turn, deformation φ can be written in terms of a
displacement field, u, over the undeformed object, Ω:

φ(X) = X + u(X) X ∈ Ω

Figure 2 An example deformation, φ, inducing some internal
potential energy and forces.

The entire pipeline is built around a piecewise linear
FEM discretization of the linear elasticity model. With this
discretization, u is expressed as a per-vertex displacement
vector field that is linearly interpolated within each tetra-
hedron using the standard linear shape functions. The in-
terpretation of u is clear: the 3-vector ui = u(xi) at un-
deformed vertex xi is the displacement carrying xi to it’s
deformed position.

Because we use linear elasticity, the internal forces will
be a linear function of the displacement. After discretiza-
tion, this relationship is encoded in the stiffness matrix,
K. This matrix maps a “flattened” displacement vec-
tor u = (u0x, u0y, u0z, . . . )

T to a “flattened” force vector
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Figure 3 Chair and leaf models deformed by their lowest (nonzero) energy modal displacements. The undeformed model is
shown on the left, and the deformed model on the right.

f = (f0x, f0y, f0z, . . . )
T :

f = −Ku

With this sign convention, the stiffness matrix will be sym-
metric positive semidefinite. There is another symmetric
matrix, the mass matrix M, that accounts for how mass
is distributed throughout the model. The mass matrix is
positive definite and can be approximated by a diagonal
“lumped mass matrix.” This approximation corresponds to
assigning to each vertex one quarter of the mass of each
adjacent tetrahedron.

These matrices are all that is needed to write the ODE
simulating a model’s behavior (in the absence of damping
and external forces):

Mü = −Ku

An arbitrary displacement can be decomposed into the full
basis of “modal displacements,” which are solutions to the
generalized eigenvalue problem:

Kuλ = λMuλ

These basis vectors are special because they evolve very sim-
ply; their amplitudes vary sinusoidally over time:

Müλ = −Kuλ = −λMuλ =⇒ üλ = −λuλ

The energy stored in mode uλ depends on λ, with the low-
est energy modes corresponding to the smallest eigenvalues.
These lowest-energy modes are the cheapest to excite, and
are thus the most likely deformations to occur. This means
that predicting the model’s likely deformations amounts to
solving the generalized eigenvalue problem.

This task is called modal analysis. The smallest 6 eigen-
values will be zero, corresponding to the 6 rigid degrees of
freedom (3 independent translations and rotations) that do
not change the model’s shape. The 7th eigenvalue and up
correspond to the likely shape deformations. The lowest
nonzero modes for two example models are shown in Figure
3.

1.2 Determining Breakages

Given a deformation, we need to decide if the model is go-
ing to break; we need to compute the maximum resulting
internal forces and check if they exceed some threshold.

The internal forces within each tetrahedron are expressed
in terms of the stress tensor, σ. In a continuous model, σ
would be a 3 × 3 matrix-valued function defined over the
entire object. After our linear discretization, however, the
stress tensor is piecewise constant, and σ for each tetrahe-
dron is just a 3× 3 matrix determined by the four vertices’
positions and displacements.

Intuitively, the stress tensor σ tells you that if you were
to slice the element along a plane with unit normal n̂, each
half would exert a force σn̂ on the other. With our model,
the stress tensor is symmetric. Therefore, the maximum-
magnitude eigenvalue tells you the magnitude of force in
the direction of maximum internal force.

To compute the maximum internal forces, then, we must
compute the maximum-magnitude eigenvalue of each ele-
ment’s 3× 3 stress tensor. This computation is examined in
Section 4.

2 Modal Analysis

Here we focus on the task of solving the generalized eigen-
value problem:

Kuλ = λMuλ.

for the smallest few eigenvalues and eigenvectors. K and M
are both extremely large matrices (each has three rows and
columns for each vertex in the mesh). However, they can be
stored efficiently because they are quite sparse. To keep the
problem in memory, we must use an algorithm that leaves
everything in a sparse format. This means using an iterative
algorithm.

We can either use an algorithm designed for the general-
ized eigenvalue problem or transform our problem into the
traditional form. Since M is positive definite, we can com-
pute it’s Cholesky factorization M = LLT (this is particu-
larly easy if M is a diagonal lumped mass matrix). Then,
letting xλ = LTuλ, we can solve the equivalent problem

Kuλ = λLLTuλ ⇐⇒ L−1KL−1
T︸ ︷︷ ︸

A

xλ = λxλ

where A is still symmetric and sparse.
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The simplest iterative technique for finding eigenvalues
is the power method. This method iteratively applies A to
a random vector x0, magnifying most the component for
the eigenvector with largest eigenvalue (vmax). Assuming a
good separation of eigenvalue magnitudes, this component
eventually dominates:

xk =
Akx0

‖Akx0‖
≈ vmax.

The smallest magnitude eigenvalues or the eigenvalues
closest to some scalar, µ, can be found by the shift-invert
power method. This simply applies the power method to
(A− µI)−1.

However, when a set of the smallest or largest eigenvalues
is desired, the Lanczos algorithm is a better tool. Instead
of just choosing the last iterate of the power method, the
Lanczos algorithm searches for the optimal eigenvector ap-
proximation in the span of all iterates:

K(A,x0, k) = span(x0,Ax0,A
2x0, . . . ,A

kx0)

This is a special space known as the Krylov subspace. In [5]
and [6], the Krylov subspace is shown to contain close ap-
proximations to both the smallest and largest eigenvalues’
eigenvectors. In other words, if one finds an orthogonal basis
for the kth Krylov subspace, Qk, then the extreme eigenval-
ues of QT

kAQk are a close approximation to the extreme
eigenvalues of A.

Even better, an orthogonal basis for the Krylov subspace
can be chosen that tri-diagonalizes A:

QT
kAQk = Tk =


α0 β1
β1 α1 β2

. . .
. . .

. . .

βn−1 αn


Finding the orthogonal columns of Qk and the entries of
Tk can be done with an efficient 3-term recurrence equation
that is the foundation of the Lanczos algorithm:

Aqk = βk−1qk−1 + αkqk + βkqk+1

αk = qkAqk

βk = ‖Aqk − βk−1qk−1 + αkqk‖

This recurrence is derived by looking at the columns of equa-
tion AQ = QT. Beware that, in practice, the iterate vec-
tors occasionally must be re-orthogonalized because inexact
arithmetic will allow components of the previous iterate vec-
tors to creep back in.

After running k iterations of the Lanczos algorithm, a
direct method like QR can be applied to the tri-diagonal
matrix Tk to obtain the maximal eigenvalue and eigenvector
approximations for A. This post-processes typically takes
negligible time.

As stated, the Lanczos algorithm’s dominant cost is
the sparse matrix vector multiply (MatVec) needed once

per iteration. This is good because sparse MatVecs are
fairly cheap and can be parallelized with various differ-
ent techniques (see Section 3). But unfortunately, for the
modal analysis matrices, plain Lanczos does not seem to
converge to the smallest eigenvalues even after thousands
of iterations. The typical approach in this situation is to
use the shift-invert Lanczos algorithm (apply Lanczos to
(A− µI)−1).

The shift-invert Lanczos algorithm (with µ ≈ 0) con-
verges quickly to the smallest eigenvalues, but it is not as
cheap or trivial to parallelize. It requires a Cholesky factor-
ization of (A− µI)−1 as a preprocessing step and then two
back substitutions per iteration (in place of the MatVec).
The Cholesky factorization incurs some additional mem-
ory costs—around 4× for our matrices with fill-in reducing
permutations—and takes a few seconds. This is undesirable
when the goal is a real-time, interactive tool. Also, the back
substitution at each iteration, though cheap, is nontrivial to
parallelize.

I tried several tricks to avoid this factorization. First,
I tried using CG to implement the (A − µI)−1 solve. This
worked very poorly, partly because of how ill-conditioned
A−µI is. It is also likely that using CG, which searches the
Krylov subspaces of (A−µI), is a bad choice for generating
basis vectors for the Krylov subspace (A− µI)−1.

I also tried existing implementations of other, more mod-
ern Krylov-based eigenvalue solvers. For example, the Lo-
cally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) Method [7]. It belongs to a class of methods,
including [10], and [9], that directly attempt to minimize the
Raleigh quotient (minimized by vmin):

ρ(x) =
xTAx

xTx

using nonlinear CG-style algorithms. At least without a
better preconditioner, none of these could converge to A’s
smallest eigenvalues.

In the end, I focused on parallelizing the MatVec in the
hope that eventually I will find an algorithm (or a better
preconditioner) that converges well to my matrices’ small-
est eigenvalues.

3 Sparse MatVec

There are many techniques for accelerating the sparse
matrix-vector multiply:

b = Ax

This task is difficult because only two floating point opera-
tions are performed for every three or four memory accesses.
Also, depending on the entry numbering and ordering, the
vector element accesses can be almost random, destroying
cache performance. Therefore, in addition to parallelizing
the multiplication, we must optimize how the matrix and
vector are accessed and stored.
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I evaluated various approaches for the GPU (Section 3.1)
but ended up working on a CPU-based implementation (Sec-
tion 3.2); the GPU performance was not particularly impres-
sive, and I found the challenges of a fast CPU implementa-
tion more interesting.

3.1 GPU Sparse MatVec

NVIDIA has released a library for sparse matrix computa-
tions on their GPUs called CUSP [2], and it includes the
optimized multiply routines and storage formats described
in [1].

The CUSP library implements four formats for general
sparse matrices: COO, CSR, ELL, and Hybrid. The COO
(“coordinate”) format simply stores a triplet per nonzero
entry with that entry’s row index, column index, and value.
The CSR (“Compressed Sparse Row”) format is another
standard format that allocates two big arrays to store all
the nonzero entries’ column indices and values. These ar-
rays are arranged so that all the elements in the same row
are contiguous. Then, a third array holds an index per row
that points to the start of that row’s entries in the column
index and value tables. The ELL format (ELLPACK or IT-
PACK) is a variant of CSR that pads each CSR row with
extra zeros so that each row has the same number of entries.
If the matrix has approximately the same number of nonze-
ros in each row, this format can give better performance on
SIMD architectures. If there are a few rows with many more
nonzeros than average, the Hybrid format can be used. This
uses ELL to pad small rows up to a selected size, then han-
dles the remaining elements of the large rows with the COO
format.

I benchmarked CUSP on a NVIDIA GeForce GTX 590
GPU. Because there are some rows in our matrices with
many more nonzeros than others, the ELL format was un-
able to fit into the GPU’s memory; the chair model’s stiffness
matrix had a minimum row nonzero count of 12, median
of 31, and maximum of 114. This variance is common to
tetrahedral meshes—the interior vertices have much higher
valence than the surface vertices.

The performance for the chair and leaf models is shown
in Table 1 and Table 2, respectively. Likely because of the
great variation in row nonzero count, the CSR format was
the clear winner. The same was true on my laptop’s NVIDIA
GeForce GT 320M, though performance was considerably
lower (see Tables 3 and 4).

Method MatVecs/sec GFLOPS

COO 813.543934 5.253709
HYB 1071.262154 6.918003
CSR 1753.814578 11.325794

Table 1 GeForce GTX 590 CUSP performance for the chair
model’s stiffness matrix (90555× 90555, 3228903 nonzeros).

Method MatVecs/sec GFLOPS

COO 856.652653 4.873226
HYB 1157.747567 6.586060
CSR 1857.880491 10.568895

Table 2 GeForce GTX 590 CUSP performance for the leaf
model’s stiffness matrix (82530× 82530, 2844342 nonzeros).

Method MatVecs/sec GFLOPS

COO 186.696985 1.205653
HYB 219.100968 1.414912
CSR 252.776376 1.632381

Table 3 GeForce GT 320M CUSP performance for the chair
model’s stiffness matrix (90555× 90555, 3228903 nonzeros).

Method MatVecs/sec GFLOPS

COO 208.939126 1.188589
HYB 245.431561 1.396183
CSR 272.717438 1.551403

Table 4 GeForce GT 320M CUSP performance for the leaf
model’s stiffness matrix (82530× 82530, 2844342 nonzeros).

3.2 CPU Sparse MatVec

3.2.1 Serial

I first implemented several serial versions of a sparse matrix-
vector multiply. I did a plain COO and CSR implementation
as described in Section 3.1. Keeping in mind that the mul-
tiply is memory-bound, I took took advantage of the sym-
metry of our matrices to nearly halve the matrix memory
accesses: I stored only the lower triangle and modified the
multiply routines to regard each off-diagonal nonzero (i, j)
as also an upper triangle entry (j, i). This lead to the SCOO
and SCSR formats (symmetric variants of COO and CSR).

There are two downsides to the symmetric variants.
First, they require more accesses to the output vector, and
the extra accesses are non-sequential. Second, the diagonal
nonzeros have to be treated differently because they only
count as a single entry (rather than as two entries like the
off-diagonals). This requires an new “if” statement in both
implementations. Branch prediction prevents this from be-
ing too costly, but it still has a performance impact.

The memory access problem is hard to avoid, but I elim-
inated the branching with my DCSR (diagonal + CSR) for-
mat that stores the diagonal entries in a dense vector and
the off-diagonal entries in CSR. The diagonal entries are
then handled with an SSE vectorized component-wise mul-
tiplication, and the off-diagonals are handled by an “if”-less
symmetric CSR multiply.
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Figure 4 Performance of the serial MatVec (left) and näıve OpenMP (right) CPU implementations for the chair stiffness matrix
on a 12 core Intel Xeon X5650 @ 2.67GHz

The names of all the serial implementations are summa-
rized in Table 5, and their performances are in Figure 4. The
Diagonal + Symmetric CSR Format is the narrow winner,
and we will see it has an even greater lead when used as the
basis for a (smart) parallel implementation.

ACOO, ACSR Plain (Asymmetric) COO, CSR Format
SCOO, SCSR Symmetric COO, CSR Format
DCSR Diagonal + Symmetric CSR Format

Table 5 Serial CPU MatVec implementation names

3.2.2 Näıve OpenMP

Because each row of the output vector is computed inde-
pendently in ACSR, this implementation is trivial to paral-
lelize using OpenMP. This gives a modest 3× speedup on
a 12 core machine (Figure 4). Due to the random output
vector accesses of the SCSR implementation, atomic opera-
tions are needed for a parallel version during emulation of
the upper triangle elements. This has a substantial perfor-
mance impact: the parallel version is actually slower than
the single-threaded version until 7 threads are used, and the
peak performance is only about 1.35× faster on the 12 core
machine (Figure 4).

3.2.3 Partitioning

There are two big problems with the näıve implementations
above. First, there is a severe load imbalance; we have al-
ready emphasized the high variation in nonzero count our
matrix rows exhibit. Second, unless we happen to have
a lucky variable numbering/matrix ordering, each thread
must access entries spread throughout the entire input vec-
tor. Both of these problems can be addressed by a parti-
tioned MatVec inspired by [4].

A given component of the result, bi, depends only on the
input vector components xj for (i, j) ∈ A. In other words,
the column indices of nonzeros in row i enumerate all the
data needed to compute bi. We could hope to form a cluster
of output entries that depend only on the same input data.
Then that input data could be cached, improving memory
access time.

Since our matrices are symmetric with a nonzero diago-
nal, the hope is even better: the cluster’s input entry indices
will be identical to its output entry indices. Thus, when re-
peatedly applying A to compute the Krylov vectors, one
cluster’s elements of all the Krylov vectors can be computed
independently of the other clusters’. So, A and x can be
partitioned into these clusters, and each part can be sent to
a separate processor/computation node where it hopefully
fits in cache.

The clusters we allude to are the connected components
of the undirected graph whose (weighted) adjacency matrix
is A. But our matrices’ graphs have a single connected
component, making such a perfect partitioning impossible.
However, we can still partition the graph in a way that min-
imizes the communication needed between parts. This cor-
responds to minimizing the edges crossing between parts,
since graph edges denote data dependencies. Because each
partition is to be run in parallel, we also want them to be
approximately the same size for good load balancing.

Unfortunately, these types of optimal graph partition-
ing problems are NP hard. If this technique is to actually
accelerate the matrix vector multiplies, we need a fast parti-
tioning algorithm. Most of the literature on this topic gave
algorithms that were too slow, so I came up with a simple
breadth first search (BFS)-based algorithm to partition the
graph in to P parts.

To have equally-sized partitions, we want the clusters’
centers to be distributed evenly around the mesh. Algo-
rithm 1 does a fairly good job of this. Once the centers are
chosen, a BFS is used to grow the clusters around the cen-
ters. Initially a single BFS was used with the P centers as
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Figure 5 Vertex partitioning (P = 11) visualized by hue: the red vertices belong to the partition with arbitrarily chosen center
vertex 0. The “equalized partitioning” is on the right for both pairs. Notice the huge pink cluster in the middle of the leaf is
shrunk to a more reasonable size by the equalizing algorithm.

start vertices, but this lead to high cluster size variance. To
address this problem, the “equalized partitioning” variant
concurrently runs P separate BFSs, executing a single step
of each search in a round-robin schedule. Under “equalized
partitioning,” each cluster grows at the same rate, and is
more likely to reach the same size before running into its
neighbors.

Algorithm 1 ChooseCenters(P )

1: Choose vertex 0 as a center (arbitrary)
2: for i = 2 to P do
3: Run a BFS to compute each vertex’s edge count dis-

tance from any existing center
4: Pick the vertex with highest distance as a new center.
5: end for

The graph induced by a stiffness matrix is closely tied
to the mesh itself. Each mesh vertex spawns three matrix
graph vertices (the graph vertices for the x, y, and z dis-
placement variables of that mesh vertex). Edges between
these graph vertex triplets correspond to mesh edges. This
connection allows us to visualize the graph partitioning as
a mesh partitioning and enables us to visually assess the
quality of the partition (Figure 5).

3.2.4 Partitioned MatVec

The matrix partitioning can be used to implement a paral-
lel MatVec. Let Pi be the set of indices of all ni vertices
in partition i. We re-index each global index v ∈ Pi with a
bijective mapping to local indices li : Pi → {0, . . . , ni − 1}.
The inverse mapping (local to global indices) is also con-
structed: gi : {0, . . . , ni − 1} → Pi.

Then, a symmetric ni×ni local sub-matrix is built from
triplets in A that correspond to edges within the partition:

Ai = {(li(j), li(k), v) : (j, k, v) ∈ A, j ∈ Pi, k ∈ Pi},

and a local sub-vector is built from x:

xi =

 x [gi (Pi[0])]
...

x [gi (Pi [ni − 1])]

 .

If there were no edges crossing between partitions, one
could just compute each bi = Aixi subproblem in parallel
and assemble the result using gi. But, if such edges exist,
then their endpoints (vertices along the partition bound-
aries) will be missing the contributions from their neighbors
in the opposite partition.

The solution is, for each vertex vi ∈ Pi connected to ver-
tex vj ∈ Pj , to create “ghost vertices” v′i in part Pj and v′j in
part Pi. These ghost vertices accumulate the contribution
of Pj ’s vertices to vi and Pi’s vertices to vj , respectively.

Pi’s augmented local sub-vectors (containing ghost ver-
tex variables) and sub-matrix (containing entries for cross-
partition edges) are called x̃i and Ãi. Now the parallel
partitioned multiply consists of computing b̃i = Ãix̃i, ex-
changing/accumulating ghost vertex values, and finally as-
sembling the result. If A is to be repeatedly applied, result
assembly only needs to happen at the very end; the inter-
mediate results can remain distributed among parts/proces-
sors. For this reason, the timing will not count the reassem-
bly cost, though this is cheap anyway.

Notice that any implementation can be used to compute
b̃i = Ãix̃i, allowing this subproblem to be optimized inde-
pendently. The next section tries multiple variants.

3.2.5 OpenMP Results

I implemented the Partitioned MatVec algorithm with
OpenMP, using each of the serial methods discussed in Sec-
tion 3.2.1 to solve the subproblems. The code can be found
in ../matvec/CPU/matmul partition omp.cc. The results
are shown in Figure 6, and are much better than for the
näıve implementation.

The substantial performance drop-off between using 10
and 12 unequalized partitions on the leaf model demon-
strates the importance of using the equalizing algorithm one.
This same performance drop-off is seen in the MPI results
of next section (Figure 8). The drop-off occurs when the
partitioner creates an 11th part that is much larger than
the previous ones, giving a single abnormally large subprob-
lem that ruins load balancing. This cluster is the pink one
mentioned in Figure 5. The size of the subproblems can be
gauged by the sub-matrix nonzero counts, which are plot-
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Figure 6 OpenMP Partitioned Parallel Sparse MatVec performance. Each line plots performance for a combination of method
(ACOO, ACSR, SCOO, SCSR, DCSR) and thread count (1 . . . 12) vs. the number of partitions used. All results were gathered
on a 12 core Intel Xeon X5650 @ 2.67GHz.

ted in Figure 7 for the 11-part partitions of the leaf model.
Notice that equalizing does in fact reduce the variance of
problem size.

The Diagonal + Symmetric CSR format is the clear win-
ner, and with equalized partitioning, there is no benefit for
using more partitions than threads. The peak performance
is 10.463 GFLOPS for the chair model’s stiffness matrix,
nearly reaching CUSP’s performance of 11.326 GFLOPS.

Another noteworthy comparison is that running on my
laptop (Dual Core, Core i5 520M @ 2.4GHz with hy-
perthreading), the 4 thread OpenMP DCSR implementa-
tion achieves 1.750 GFLOPS for the chair matrix, beating
CUSPS’ 1.632 GFLOPS (Table 3).

3.2.6 MPI Results

To scale past 12 cores and to take advantage of multiple
independent memory/cache systems, I wrote an MPI im-
plementation using the Diagonal + Symmetric CSR format
to solve the subproblems. This implementation is found in
matvec/CPU/matmul partition.cc.

In this implementation, one partition is created per pro-
cessor (since no real performance gain was seen with more
partitions in the OpenMP implementation). The root pro-

cessor partitions the matrix and distributes the subprob-
lems to the other processors. It also tells each processor
which ghost variables it must exchange with which other
processors. Blocking MPI SEND and MPI RECV calls are used
to exchange the ghost variables; because the exchanges are
symmetric, is not hard to devise an ordering such that these
operations will never deadlock.

I benchmarked my code on two nodes of a supercom-
puter. Because communication is minimized by the parti-
tioning, performance was still good even when the job spilled
across nodes. These results are shown in Figure 8. The effi-
ciency does fall as processors are added (as expected given
the rising communication overhead and extra work for ghost
vertices), but it remains around 50–60% when equalized par-
titioning is used.

The peak performance is 16.869 GFLOPS for the chair
model’s stiffness matrix, easily surpassing CUSP’s perfor-
mance.

4 Stress Tensor Eigenvalues

We turn now to the other target for optimization, finding the
eigenvalues of potentially millions of 3 × 3 matrices (recall
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Figure 8 MPI Partitioned Parallel Sparse MatVec performance and efficiency. These results were gathered on two nodes of a
cluster, each with a 12 core Intel Xeon X5650 @ 2.67GHz.
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Core i5 520M @ 2.4 GHz

N OMP Time SSE Time SSE Speedup 3x3 Time (OMP) 3x3 Time (SSE) Memory (MB)

8000 0.001909 0.000721 2.647711512 238.625 90.125 0.192
80000 0.011529 0.003915 2.944827586 144.1125 48.9375 1.92
800000 0.104563 0.038956 2.684130814 130.70375 48.695 19.2
8000000 0.917951 0.372261 2.465880122 114.743875 46.532625 192
80000000 9.387443 3.895451 2.409847538 117.3430375 48.6931375 1920

Core i7 3930K @ 3.2 GHz

N OMP Time SSE Time SSE Speedup 3x3 Time (OMP) 3x3 Time (SSE) Memory (MB)

8000 0.000318 0.000115 2.765217391 39.75 14.375 0.192
80000 0.002231 0.000652 3.421779141 27.8875 8.15 1.92
800000 0.019827 0.004452 4.453504043 24.78375 5.565 19.2
8000000 0.193981 0.042834 4.528668814 24.247625 5.35425 192
80000000 1.937165 0.431384 4.490581477 24.2145625 5.3923 1920

Table 6 OpenMP and OpenCL eigenvalue solver benchmarks for N symmetric 3 × 3 matrices on two machines. The Core
i5 supports 4-wide SSE instructions, giving a 2.5–3× speedup, while the Core i7 supports, 8-wide AVX instructions, giving a
2.75–4.5× speedup.

that the maximum-magnitude eigenvalue of the per-element
stress tensor gives the maximum internal force in that ele-
ment).

For this task, we use the Jacobi eigenvalue algorithm
as proposed in [8]. We could easily have solved the third
degree characteristic polynomial, but that approach is un-
stable. Jacobi’s eigenvalue algorithm consists of repeatedly
conjugating the matrix by orthogonal matrices, which is a
provably stable operation. For 3 × 3 matrices, I found the
Jacobi’s algorithm converges to nearly within machine pre-
cision of the eigenvalues in just 4 full passes, making it ex-
tremely fast.

The basic idea behind the Jacobi eigenvalue algorithm is
to iteratively conjugate by Givens rotations matrices, Qk,
each chosen to zero out a particular off-diagonal entry:

Ak+1 = Q−1k AkQk = QT
kAkQk

Future iterations will reintroduce off-diagonal values that
were already cancelled, but the net result of each conjuga-
tion is to reduce the off-diagonal sum of squares (causing an
equal increase in the diagonal sum of squares since the total
Frobenius norm is invariant to conjugation by orthogonal
matrices). One can give bounds on the off-diagonal norm
after k iterations (see [6]).

[8] describes how to compute approximate Givens rota-
tions that still give provable convergence but avoid branch-
ing. This modified algorithm is ideal for a SIMD implemen-
tation: the computation path for each matrix is identical.
[8] provides an implementation of their 3 × 3 SVD algo-
rithm using SSE intrinsics, but these intrinsics make the
code very difficult to read. I decided to implement a 3 × 3
eigensolver for symmetric matrices using OpenMP. Because
auto-vectorization was unable to vectorize my code, I also
wrote an OpenCL version using the float8 datatype to force

vectorization. The benefit of this is the same readable code
can also run on the GPU if desired.

I operate on the symmetric matrices in compressed form:
the lower triangle of each matrix is stored as 6 scalars. I
worked out the formulas for the compressed output of the
conjugation by a givens rotation matrix, and the resulting
code is found in fast eig33/fast eig33.c. The optimized
OpenCL code is in fast eig33/fast eig33.cl.

Performance on two machines is shown in Table 6. The
Core i7 machine was able to compute a set of eigenvalues ev-
ery 5.3ns (amortized) at peak performance. This is so fast
that it doesn’t make sense to run the code on the GPU (even
though it is already implemented in OpenCL); the bench-
marks reveal that the largest problem size one could fit in
the memory of a modern GPU would take no more than a
few seconds. The models a user might create are unlikely to
even come close to this size.

5 Future Work

The glaring omission in this optimization effort is the ab-
sence of an algorithm using only a sparse MatVec to find
the smallest eigenvalues. Without this algorithm, the opti-
mised sparse MatVec cannot be used for modal analysis. I
will continue to search for a method that is capable of con-
verging to the smallest eigenvalues of my particular matrices
at a feasible rate.

In the meantime, I will focus on the other bottlenecks
of the pipeline. I plan to construct the stiffness matrix on
the GPU—the full matrix can be built up from independent
per-element stiffness matrices. It does require an efficient re-
duction into the full sparse matrix. Techniques for this are
explored in [3]. I also plan to parallelize the stress tensor
construction.
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