Robustness Prediction for Rapid Manufacturing

HPC Project: Julian Panetta Research: James Zhou, Denis Zorin

18 December 2012

NEW YORK UNIVERSITY

Rapid Manufacturing

• 3D printers are becoming affordable!

Figure : "MakerBot Replicator 2" \$2199

Services

- Several companies do 3D printing/sales for you:
 - Shapeways (NYC-based, James's internship)

NYU

Image Source: shapeways.com

• The model might not be sturdy enough...

- It would be nice to know this beforehand.
- Even better: interactive feedback while designing.

Image Source: http://www.turbosquid.com/3dmodels/heart-broken-broke-3dmodel/648084

HPC Project: Julian Panetta,

Robustness Prediction

- Predict amount of force required to break the object and where it will break.
- Challenge: where is this force going to be applied?
- Input: 3D Volume Meshes (tetrahedra)

Approach: Linear Elasticity

• Internal forces are caused by deformation, ϕ :

- Linear elasticity: simple model where force is a linear function of displacement field, u(X)
- Linear FEM Discretization
 - Per-vertex displacement vector $u_i = u(X_i)$
 - Linear interpolation within tets (Piecewise linear deformation)

What Breaks?

- Given a deformation, will the model break?
- We predict a model (element) will break if internal forces exceed a threshold.
- Internal forces: $\mathbf{T}^{(n)} = \sigma \mathbf{n}$ (σ is the 3 × 3 stress tensor)

 $\bullet\,$ Intuitively: force after element sliced by plane with normal n

• So: maximum eigenvalue of σ gives internal force in maximum direction.

Image Source: Wikipedia

- For each tetrahedral element, e, compute σ_e
- \bullet Thousands and thousands of 3 \times 3 eigenvalue problems
- James was using scipy, and this was SLOW.
- SIMD operation-great candidate for OpenCL.

Image Source: Wikipedia

3×3 Eigenvalues

- Could solve cubic polynomial-unstable!
- Alternate approach: Jacobi's eigenvalue algorithm.
 - Iteratively conjugate by orthogonal matrices: $A_{k+1} = U_k^T A_k U_k$
 - Choose a nonzero off-diagonal and solve for a "Givens Rotation" matrix that zeroes it:

$$U_{k} = G(i, j, \theta) \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & \cos(\theta) & \cdots & -\sin(\theta) & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & \sin(\theta) & \cdots & \cos(\theta) & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

- Each iteration moves nonzero "mass" to the diagonal
- Converges quickly for small matrices.
- With approximations, can be modified to avoid branching.

Performance

- $\bullet~\approx 120 \text{ns}$ per 3×3 using <code>OpenMP</code>
- \approx 40ns per 3 \times 3 matrix using 4-wide SSE! (OpenCL)
- Negligible time for even the largest problem size I could fit on the GPU-might as well keep it on the CPU.
- Interesting tidbit: ffast-math replaces:

float w = 1.0f / sqrtf(a12_sqr + a11_m_a22_sqr); With RSQRT + Newton Raphson Correction step:

rsqrtss	%xmm1,%xmm3
mulss	%xmm3,%xmm1
mulss	%xmm3,%xmm1
mulss	0x00003680(%rip),%xmm3
addss	0x00003674(%rip),%xmm1
mulss	%xmm3,%xmm1

- We must effectively search over all possible deformations.
- **Modal Analysis**, a common technique in accelerating simulations, is key in making this search tractable.
- Consider how a displacement evolves: (Newton's Law):

$\mathbf{K}\mathbf{u}=\mathbf{M}\ddot{\mathbf{u}}$

- K: Stiffness matrix (maps displacement to force)M: Mass matrix
- Solution can be decomposed into eigenvectors whose components vary sinusoidally in time.
- Eigenvalue gives corresponding frequency/energy

• Modes are given by the generalized eigenvalue problem:

$$\mathbf{K}\mathbf{x} = \lambda \mathbf{M}\mathbf{x}$$

K: Symmetric Positive Semidefinite, Sparse **M**: Symmetric Positive Definite, Sparse

• Can be solved as-is, or transformed into traditional eigenvalue problem using Cholesky factorization $\mathbf{M} = \mathbf{L}\mathbf{L}^{\mathsf{T}}, \quad \mathbf{y} = \mathbf{L}^{\mathsf{T}}\mathbf{x}$

$$\mathbf{L}^{-1}\mathbf{K}\mathbf{L}^{-1^{\mathsf{T}}}\mathbf{y} = \mathbf{\tilde{K}}\mathbf{y} = \lambda\mathbf{y}$$

Cheap if we use a lumped mass approximation (M diagonal)

• What do these look like? Demo.

Sparse Eigenvalue Problem

- We want the smallest eigen pair of sparse SPD matrix A
- Only tractable techniques: iterative
- Power Method: find largest eigenvalue/eigenvector
 - Repeatedly apply A to random x_0 , blowing up largest eigenvector's component.
 - $\bullet \ x_k = A^k x_0 \ \text{approximates eigenvector}$
- But, we can do much better by considering the entire Krylov space:

$$span(x_0, Ax_0, \dots, A^kx_0)$$

Sparse Eigenvalue Problem: Lanczos

- Lanczos Method: find SET of largest/smallest eigen pairs
 - $\bullet\,$ Build Krylov basis by repeatedly applying A to random x_0
 - The Krylov subspace is optimal for approximating largest and smallest eigenvectors of **A**
 - Orthonormal Krylov basis tri-diagonalizes A
 ⇒ Einding approximate gigen pairs is cheap tri
 - \Rightarrow Finding approximate eigen pairs is cheap tri-diagonal eigenvalue problem
 - Can derive 3-term recurrence relation for orthonomal basis.

Image Source: physics.ncsu.edu/lanczos/

Lanczos Problems

- Main point: dominant cost is the sparse matvec Ax
- Wrinkle: plain Lanczos doesn't converge to my smallest eigenvalues (though it efficiently finds the largest).
- Work-around: "Shift-Invert Lanczos" on $(\mathbf{A} \sigma \mathbf{I})^{-1}$
 - Converges wonderfully, but...
 - Requires factorization (slow, 4x fill-in)
 - Back substitions instead of plain matvecs-hard to parallelize!
- Other "matvec"-only techniques I tried:
 - Using CG to apply $(\mathbf{A} \sigma \mathbf{I})^{-1}$ (Doesn't converge)
 - RCG/LOBPCG: Directly minimize Rayleigh quotient $\frac{x^T A X}{x^T x}$ with nonlinear CG (Doesn't converge)

- To have something to show today, I decided to go ahead with optimizing/parallelizing the sparse matvec.
- Challenge: sparse matvecs do only two FLOPs per every four memory accesses!
- GPU Option: not particularly exciting-just ways make matrix element access more contiguous
- Also not particularly fast (CUSP, NVIDIA's sparse matrix library)
 - $\bullet\,$ only gets ≈ 1.38 GFLOPS on my GeForce 320m
 - $\bullet\,$ still only ≈ 6.5 GFLOPS on a GeForce GTX 590

MPI Sparse Matvec

- I decided to implement a parallel sparse matvec in MPI
- Inspired by James Demmel's talk, "Communication-Avoiding Algorithms..."
- Insight:
 - Rows/columns *i* of *K* correspond to mesh vertices, *v_i*
 - Nonzero entries (i, j) in K correspond to mesh edges (v_i, v_j)
 - i.e. result component $(\mathbf{K}\mathbf{x})_i = \mathbf{K}(i, i)\mathbf{x}_i + \sum_{j adj to i} \mathbf{K}(i, j)\mathbf{x}_j$
- This means if we cluster adjacent nodes together, only communicate boundary node contributions.

Partitioning

- Optimal partitioning (minimizing communication) is NP-hard
- I need a FAST partitioning algorithm
- I came up with a greedy BFS-based algorithm, with pretty good results:

- Root breaks mesh into P partitions
- Root constructs and distributes to each process
 - re-indexed sub-matrices and sub-vectors
 - list of elements that must be communicated with neighbors
- All *P* processors do a sub-matrix, sub-vector matvec
- All P processors exchange/reduce boundary node contributions

- Cache performance is improved because re-indexed subproblems are more likely to fit.
- Individual sub-matrix matvec can be optimized independently/run on GPU
- Current performance: $\approx 1~{\rm GFLOPS}$ on my Core i5 520m (demo)

- OpenCL Sparse Matvec
- GPU FEM matrix construction
 - Most FEM codes build per-element matrices and compile them into a full matrix.
 - Embarrassingly parallel operation followed by careful reduction
- Find/devise a working matvec-only small eigensolver! (Nontrivial!)