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Rapid Manufacturing

3D printers are becoming affordable!

Figure : “MakerBot Replicator 2” $2199
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Services

Several companies do 3D printing/sales for you:

Shapeways (NYC-based, James’s internship)

i.materialise
NYU
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The Problem

The model might not be sturdy enough...

It would be nice to know this beforehand.

Even better: interactive feedback while designing.
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Robustness Prediction

Predict amount of force required to break the object and
where it will break.

Challenge: where is this force going to be applied?

Input: 3D Volume Meshes (tetrahedra)
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Approach: Linear Elasticity

Internal forces are caused by deformation, φ:

Linear elasticity: simple model where force is a linear function
of displacement field, u(X )

Linear FEM Discretization

Per-vertex displacement vector ui = u(Xi )
Linear interpolation within tets (Piecewise linear deformation)
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What Breaks?

Given a deformation, will the model break?

We predict a model (element) will break if internal forces
exceed a threshold.

Internal forces: T(n) = σn (σ is the 3× 3 stress tensor)

Intuitively: force after element sliced by plane with normal n

So: maximum eigenvalue of σ gives internal force in
maximum direction.
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What Breaks?

For each tetrahedral element, e, compute σe

Thousands and thousands of 3× 3 eigenvalue problems

James was using scipy, and this was SLOW.

SIMD operation–great candidate for OpenCL.
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3× 3 Eigenvalues

Could solve cubic polynomial–unstable!
Alternate approach: Jacobi’s eigenvalue algorithm.

Iteratively conjugate by orthogonal matrices:
Ak+1 = UT

k AkUk

Choose a nonzero off-diagonal and solve for a “Givens
Rotation” matrix that zeroes it:

Uk = G (i , j , θ)



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θ) · · · − sin(θ) · · · 0
...

...
. . .

...
...

0 · · · sin(θ) · · · cos(θ) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


Each iteration moves nonzero ”mass” to the diagonal
Converges quickly for small matrices.
With approximations, can be modified to avoid branching.
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Performance

≈ 120ns per 3× 3 using OpenMP

≈ 40ns per 3× 3 matrix using 4-wide SSE! (OpenCL)

Negligible time for even the largest problem size I could fit on
the GPU–might as well keep it on the CPU.

Interesting tidbit: ffast-math replaces:

float w = 1.0f / sqrtf(a12_sqr + a11_m_a22_sqr);

With RSQRT + Newton Raphson Correction step:

rsqrtss %xmm1,%xmm3

mulss %xmm3,%xmm1

mulss %xmm3,%xmm1

mulss 0x00003680(%rip),%xmm3

addss 0x00003674(%rip),%xmm1

mulss %xmm3,%xmm1
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Modal Analysis

We must effectively search over all possible deformations.

Modal Analysis, a common technique in accelerating
simulations, is key in making this search tractable.

Consider how a displacement evolves: (Newton’s Law):

Ku = Mü

K: Stiffness matrix (maps displacement to force)
M: Mass matrix

Solution can be decomposed into eigenvectors whose
components vary sinusoidally in time.

Eigenvalue gives corresponding frequency/energy
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Modes

Modes are given by the generalized eigenvalue problem:

Kx = λMx

K: Symmetric Positive Semidefinite, Sparse
M: Symmetric Positive Definite, Sparse

Can be solved as-is, or transformed into traditional eigenvalue
problem using Cholesky factorization M = LLT, y = LTx

L−1KL−1Ty = K̃y = λy

Cheap if we use a lumped mass approximation (M diagonal)

What do these look like? Demo.
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Sparse Eigenvalue Problem

We want the smallest eigen pair of sparse SPD matrix A
Only tractable techniques: iterative
Power Method: find largest eigenvalue/eigenvector

Repeatedly apply A to random x0, blowing up largest
eigenvector’s component.
xk = Akx0 approximates eigenvector

But, we can do much better by considering the entire Krylov
space:

span(x0,Ax0, . . . ,A
kx0)
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Sparse Eigenvalue Problem: Lanczos

Lanczos Method: find SET of largest/smallest eigen pairs

Build Krylov basis by repeatedly applying A to random x0
The Krylov subspace is optimal for approximating largest and
smallest eigenvectors of A
Orthonormal Krylov basis tri-diagonalizes A
⇒ Finding approximate eigen pairs is cheap tri-diagonal
eigenvalue problem
Can derive 3-term recurrence relation for orthonomal basis.
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Lanczos Problems

Main point: dominant cost is the sparse matvec Ax

Wrinkle: plain Lanczos doesn’t converge to my smallest
eigenvalues (though it efficiently finds the largest).

Work-around: ”Shift-Invert Lanczos” on (A− σI)−1

Converges wonderfully, but...
Requires factorization (slow, 4x fill-in)
Back substitions instead of plain matvecs–hard to parallelize!

Other “matvec”-only techniques I tried:

Using CG to apply (A− σI)−1 (Doesn’t converge)

RCG/LOBPCG: Directly minimize Rayleigh quotient xTAX
xT x

with nonlinear CG (Doesn’t converge)
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Sparse Matvec

To have something to show today, I decided to go ahead with
optimizing/parallelizing the sparse matvec.

Challenge: sparse matvecs do only two FLOPs per every four
memory accesses!

GPU Option: not particularly exciting–just ways make matrix
element access more contiguous

Also not particularly fast (CUSP, NVIDIA’s sparse matrix
library)

only gets ≈ 1.38 GFLOPS on my GeForce 320m
still only ≈ 6.5 GFLOPS on a GeForce GTX 590
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MPI Sparse Matvec

I decided to implement a parallel sparse matvec in MPI

Inspired by James Demmel’s talk, “Communication-Avoiding
Algorithms...”

Insight:

Rows/columns i of K correspond to mesh vertices, vi
Nonzero entries (i , j) in K correspond to mesh edges (vi , vj)
i.e. result component (Kx)i = K(i , i)xi +

∑
j adj to i K(i , j)xj

This means if we cluster adjacent nodes together, only
communicate boundary node contributions.
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Partitioning

Optimal partitioning (minimizing communication) is NP-hard

I need a FAST partitioning algorithm

I came up with a greedy BFS-based algorithm, with pretty
good results:
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MPI Algorithm

Root breaks mesh into P partitions

Root constructs and distributes to each process

re-indexed sub-matrices and sub-vectors
list of elements that must be communicated with neighbors

All P processors do a sub-matrix, sub-vector matvec

All P processors exchange/reduce boundary node
contributions
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Performance Notes

Cache performance is improved because re-indexed
subproblems are more likely to fit.

Individual sub-matrix matvec can be optimized
independently/run on GPU

Current performance: ≈ 1 GFLOPS on my Core i5 520m
(demo)
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Future (Current) Work

OpenCL Sparse Matvec

GPU FEM matrix construction

Most FEM codes build per-element matrices and compile them
into a full matrix.
Embarrassingly parallel operation followed by careful reduction

Find/devise a working matvec-only small eigensolver!
(Nontrivial!)
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