Enumeration of Molecular
Clusters

Karthik Mahadevan
Yuji Urano

Introduction

* Terminologies
— Floppy cluster
— Rigid cluster

* Why enumerate?
— Scientific importance

* How to enumerate?
— Start by breaking a bond

Interesting question

* How many rigid clusters are there for a particular
n (n: number of particles)?

* The number of rigid clusters increases
dramatically

up to n=5, there is one

n=6, there are 2 n=7, there are 5

n=8, there are 13 n=9, there are 52

n=10, there are 263 n=11, there are 1657, etc

Representation
e Rigid cluster, N =6

N

001111
001111
N 110011
110011
111100
111100

Algorithms

e Algorithm 1
— Floppy to rigid
e Algorithm 2
— One rigid cluster to all possible enumerations

Algorithm 1(Floppy to Rigid)

Start with a particle and a matrix M of bond
constraints

Compute the Null space of M

Take a step in the direction of the vector in the
tangent space

Get back to manifold by solving the nonlinear
system of equations by Newton’s method

Repeat until new bond is formed

Algorithm 2(Permute and find all
packings)

Break a bond, then you get a floppy particle(s)
Use Algorithm 1 to find a rigid cluster
The new rigid cluster might be different

You have to do this for all bonds from all rigid
clusters

Parallelization

* You have to break all the bonds from all rigid
clusters

* You can do it independently
* This operation is parallelizable!

Process Communication

Tasks

Rank O Workers Existing Non-isomorphic packings
N i\
Recv Regv
task ad)
Sénd d Recv Send count
task Send task NeEW Recv
L cluster $j
s v o

Worker Ranks

Isomorphism Check

Rank O

[T T T]

0
/ l/djr:vz:t%n{:ia%s

Rank 1

Isomorphism Check

Rank O

4
/ /djacencies

Rank 1

Isomorphism Check

Optimization

* Adjacency check is done in parallel by
OpenMP threads

* All send messages are non-blocking

Timing (seconds)

parallel sequential

(no. ranks)
6 1.14 (24) 11
7 1.23 (40) 33
8 3.12 (80) 115
9 10.02 (64) 505
10 223.6 (104) 3570

4000
3500
3000
2500
2000
1500
1000

500

—parallel

—sequential

Thank You

