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Abstract

This is a short tutorial on Computational Fluid Dynamics, which
is a challenging subject to learn. I will introduce all of the topics
necessary to understand and build a fluid solver. Very little previous
knowledge in the subject will be assumed and explanations will be
given with the goal of being able to implement a solver on the CPU
and GPU.
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Introduction

It is challenging to start with an example like Jos Stam’s solver that
he describes [Stam 2003] and [Stam 1999] and extend it. The math
and notation is difficult especially for someone who has not taken
vector calculus or differential equations. Recently there have been
papers and a book that makes this task a little easier; In this project I
used Robert Bridson’s book, [Bridson 2009] which is in turn based
upon the notes for a Siggraph course on Fluid Simulation[Bridson
2007]. I also used Ronald Fedkiw’s paper [R. Fedkiw 2001]. David
Cline et al. paper [David Cline ] was also quite useful.

1 What does Semi-Lagrangian mean?

There a couple of common ways to approach simulating fluids, and
among these they basically fall into two camps. The Lagrangian
point of view treats the world like a particle system where particles
have properties which are tracked as the particle moves. The other
viewpoint is the Eulerian viewpoint where you have fixed points in
space, usually placed in a grid layout, where you measure things
as they go past. If you think of it as measuring the weather, the
Lagrangian way would be using weather balloons floating with the
wind. The Eulerian way would be to place sensors on the ground
measuring the weather over time. The simulator described in this
report falls somewhere in between. It uses a grid to store and track
fluid properties but it uses virtual particles to help compute where
things are going. This approach is categorized as Semi-Larangian,
because it uses virtual particles to handle the advection.

2 Incompressible Navier Stokes

The governing equations of fluid flow that we will start with are
called the incompressible Navier Stokes equations:

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+ v∇2u+ F (1)

∇ · u = 0 (2)
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The equation is broken down as follows:

∂u
∂t

The derivative of velocity with respect to time.
Calculated at each grid point each time step.

−(u · ∇)u The convection term. This is the self advection
term where the velocity field advances along it-
self. In the code we will use the backward particle
trace for this term.

− 1
ρ
∇p The pressure term. ρ is the density of the fluid

and p is the pressure. p is whatever it takes to
make the velocity field divergence free. The sim-
ulator will solve for a pressure that makes our
fluid incompressible at each time step.

v∇2u The viscosity term. The Euler equations that we
are going to use drop this term.

(3)

F External force. Any external forces including
gravity.

3 Incompressible Euler Equations

If you drop the viscosity term from the incompressible Navier
Stokes equations we get:

∂u

∂t
+ (u · ∇)u+

1

ρ
∇p = F (4)

∇ · u = 0 (5)

Such an ideal fluid with no viscosity is called inviscid. These are
the equations we are going to use.

4 Mathematical Notation

Inspired by another paper [David Cline ], here is a quick introduc-
tion to some Mathematical operators and what they turn into when
you discretize them on a grid.

The partial derivative (∂). In this paper approximated with
a central difference:

∂f(x, y, z)

∂y
=
f(x, y + h, z)− f(x, y − h, z)

h

on a MAC grid:

∂f(x, y, z)

∂y
= f(x, y + 1, z)− f(x, y, z)

The gradient operator (∇) is a vector of partial derivatives:



∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
A 3D gradient on a MAC grid will look like:

∇f(x, y, z) =

 f(x+ 1, y, z)− f(x, y, z),

f(x, y + 1, z)− f(x, y, z),

f(x, y, z + 1)− f(x, y, z)



The divergence of a vector field (∇ · u) produces the scalar field:

∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

A 3D divergence on a MAC grid will look like:

∇ · u(x, y, z) =(ux(x+ 1, y, z)− ux(x, y, z))+

(uy(x, y + 1, z)− uy(x, y, z))+

(uz(x, y, z + 1)− uz(x, y, z))

The Laplacian operator (∇2) is the dot product of two gradient
operators:

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

A 3D Laplacian on a MAC grid will look like:

∇2f(x, y, z) =f(x+ 1, y, z) + f(x− 1, y, z)+

f(x, y + 1, z) + f(x, y − 1, z)+

f(x, y, z + 1) + f(x, y, z − 1)− 6f(x, y, z)

To apply ∇2 to a vector field we apply the operator to each vector
component separately:

∇2u(x, y, z) =

∇
2ux(x, y, z),

∇2uy(x, y, z),

∇2uz(x, y, z)


5 MAC Grid

In the simulation we store various values in grids (velocity, pres-
sure, fluid concentration, etc) at various points in space. Unfortu-
nately the obvious choice of a uniform grid isn’t the best. There
is a technique called the marker-and-cell (MAC) method [F H Har-
low 1965] for discretizing incompressible flow problems. The main
contribution that method made to modern CFD was the introduction
of the staggered grid. The Mac grid method discretizes space into
square or cubic cells with width h. Each cell has a pressure, p, de-
fined at its center. It also has a velocity, u = (ux, uy, uz), but the
components of the velocity are placed at the centers of the cell faces
(for example ux on the x-min face and so on as shown in Figures 1
and 2).

Figure 1: 2D MAC Cell

Figure 2: 3D MAC Cell

The rationale for putting the velocity components on the faces is
that we can use more accurate central differences for the pressure
gradient and for the divergences without the disadvantages of a reg-
ular grid. Central differences (6) are O

(
∆x2

)
accurate but they

have to be handled carefully:

∂q

∂x
≈ qi+1 − qi−1

2∆x
(6)

As described in the literature there are problems with the sampling
pattern of (6).1 It turns out that the MAC grid solves this problem
by using a staggered grid, where we don’t skip over any indices
and it achieves an O

(
∆x2

)
accuracy. You can then estimate the

derivative at grid point i in the staggered grid as:

∂q

∂x
≈
qi+1/2 − qi−1/2

∆x
(7)

It turns out that in the Pressure Projection stage the staggered grid
has other useful properties. However there are problems with it.
Specifically in order to evaluate velocity anywhere in the grid you

1See Bridson’s book for an explanation



have to do a three trilinear interpolations, one for each component.
In general this is made up for by the increased accuracy of the
solver.

6 Algorithm

6.1 Simulation Loop

With the aforementioned MAC structure we can now present the
components of the simulator. Starting with an initial divergence-
free velocity field u:

• For each simulation step...

– Choose a timestep ∆t.

– Compute the advection term −(u · ∇)u → uA =
advect(un,∆t, un)

– Add external forces→ uB = uA + ∆tF

– Solve for pressure so such that ∇ · u = 0→ un+1 =
project(∆t, uB)

6.2 Choosing a Timestep

A great property of using a semi-Lagrangian solver is that it can
handle large time steps without instability. While you can choose
a ∆t that suits your own accuracy, Bridson mentions that you can
get strange results if you set ∆t too high. So he recommend using a
heuristic put forth by [N Foster 2001] where the strategy is to limit
the time step so that the furthest particle trajectory is traced five cell
widths:

∆t ≤ 5∆x

umax
(8)

Bridson recommends calculating umax in the following way:

umax = max (|u|) +
√

∆x|F | (9)

Where F are the body forces and ∆x is a grid cell width. This is
slightly more robust because it also takes into account the forces
acting on the fluid, it is always positive and can’t cause a divide by
zero.

6.3 Advection

Advection (or convection) propagates according to the expression
−(u · ∇)u. This term makes the Navier-Stokes and Euler Equa-
tions non-linear. Some methods use finite differencing [N Foster
1996] which is only stable when the time step is small enough to
satisfy ∆t < ∆h/umax (h is the grid cell width) 2. Bridson uses
a technique made popular by Jos Stam [Stam 1999] that results in
an ”unconditionally” stable solver3. This method is referred to as
a backwards particle trace and has several advantages; most im-
portantly it is unconditionally stable. Stam argues that this can be
seen because the new field is simply an interpolated sampling of the
previous field and as a result the maximum value of the new field
is never larger than the largest value of the previous field. It is also
simple to implement. See Figure 3.

2Please see the references for the conditions that led to this inequality
3Stam based the method upon a technique to solve partial differential

equations known as the method of characteristics. See appendix A of his
paper [Stam 1999]

Figure 3: Basic idea behind the advection step. Instead of moving
the cell centers forward in time (b) through the velocity field shown
in (a), we look for the particles which end up exactly at the cell
centers by tracing backwards in time from the cell centers (c).

[Stam 2003]

6.3.1 Semi-Lagrangian Advection Method

The advection step can be encapsulated by the function:

qn+1 = advect(u,∆t, qn)

where the value q represents the quantity that is being advected.
Stam [Stam 1999] explains the method of backward particle trace:
“At each time step all the fluid properties are moved by the flow
field u. To obtain the velocity at point xG at the new time t + ∆t,
we backtrace the point xG through the flow field u over a time
∆t. This traces backward partially along the streamlines of the flow
field. The new velocity at the point xG, had its previous location a
time ∆t ago.” The tricky part of this method is how you calculate
the previous location. You can use a Forward Euler step, which
simply evaluates the velocity at xG and updates the position of xG
based upon this velocity. You end up arriving at point xp which is
your back traced position:

xp = xG + ∆tu(xG)

Because the velocity is not constant this can be inaccurate, and
therefore Bridson recommends using at least Runge-Kutta order
two interpolation (RK2) instead:

xmid = xG −
1

2
∆tu (xG)

xp = xG −∆tu (xmid)

Again where u(xG) is evaluating the velocity field u at grid posi-
tion xG to get a position half a time step away at xmid. Use xmid to
sample the velocity field again u(xmid) which is the velocity which
will be used for the whole time step.

The above method plus the RK2 interpolation is encapsulated by:

qn+1
G = interpolate (qn, xp)

Where qn+1
G is the new value of the quantity you are advecting (ve-

locity, density, temperature, etc.) at a grid point G, qn is the field
of the current values for that quantity and xp is the back traced po-
sition using the flow field.

Many people get confused by the backwards particle trace. The
listing below shows how it translated into code for my simulator:



vo id a d v e c t v e l o c i t y R K 2 ( f l o a t d e l t a t i m e , f l o a t ∗u , f l o a t ∗v , f l o a t ∗w,
f l o a t ∗ u prev , f l o a t ∗ v prev , f l o a t ∗ w prev )

{
/ / The NX s c a l i n g f a c t o r was found by l o o k i n g a t Stam ’ s code . I can ’ t f i n d
/ / a r e a s o n i n h i s p a p e r o r anywhere e l s e why you would s c a l e t h i s way .
/ / But w i t h o u t i t t h e b a c k t r a c e n e v e r makes i t o u t o f t h e s o u r c e c e l l .

f l o a t d t =−d e l t a t i m e∗NX;
i n t 3 dims = {NX,NY, NZ};
FOR EACH FACE
{

f l o a t 3 pos = { i∗H, j∗H, k∗H};
f l o a t 3 o r i g v e l = {u p r e v [ IX ( i , j , k ) ] , v p r e v [ IX ( i , j , k ) ] , w prev [ IX ( i , j , k ) ]} ;

/ / RK2
/ / What i s u ( x ) ? v a l u e ( such as v e l o c i t y ) a t x
/ / y = x + d t∗u ( x + ( d t / 2 )∗u ( x ) )

/ / b a c k t r a c e based upon c u r r e n t v e l o c i t y a t c e l l c e n t e r .
f l o a t halfDT = 0.5∗ d t ;
f l o a t 3 h a l f w a y p o s i t i o n = {

pos . x +( halfDT∗o r i g v e l . x ) ,
pos . y +( halfDT∗o r i g v e l . y ) ,
pos . z +( halfDT∗o r i g v e l . z )
};

f l o a t 3 h a l f w a y v e l ;
h a l f w a y v e l . x = g e t i n t e r p o l a t e d v a l u e ( u prev , h a l f w a y p o s i t i o n , H, dims ) ;
h a l f w a y v e l . y = g e t i n t e r p o l a t e d v a l u e ( v prev , h a l f w a y p o s i t i o n , H, dims ) ;
h a l f w a y v e l . z = g e t i n t e r p o l a t e d v a l u e ( w prev , h a l f w a y p o s i t i o n , H, dims ) ;

f l o a t 3 b a c k t r a c e d p o s i t i o n ;
b a c k t r a c e d p o s i t i o n . x = pos . x + d t∗h a l f w a y v e l . x ;
b a c k t r a c e d p o s i t i o n . y = pos . y + d t∗h a l f w a y v e l . y ;
b a c k t r a c e d p o s i t i o n . z = pos . z + d t∗h a l f w a y v e l . z ;

/ / Have t o i n t e r p o l a t e a t new p o i n t
f l o a t 3 t r a c e d v e l o c i t y ;
t r a c e d v e l o c i t y . x = g e t i n t e r p o l a t e d v a l u e ( u prev , b a c k t r a c e d p o s i t i o n , H,

dims ) ;
t r a c e d v e l o c i t y . y = g e t i n t e r p o l a t e d v a l u e ( v prev , b a c k t r a c e d p o s i t i o n , H,

dims ) ;
t r a c e d v e l o c i t y . z = g e t i n t e r p o l a t e d v a l u e ( w prev , b a c k t r a c e d p o s i t i o n , H,

dims ) ;

/ / Has t o be s e t on u
u [ IX ( i , j , k ) ] = t r a c e d v e l o c i t y . x ;
v [ IX ( i , j , k ) ] = t r a c e d v e l o c i t y . y ;
w[ IX ( i , j , k ) ] = t r a c e d v e l o c i t y . z ;
}
}

Listing 1: Backwards particle trace based advection using RK2

6.4 Add Body Forces

At this point you would add any external forces, such as gravity or
buoyancy to the flow field u. This is also the correct point to add any
forces a user might want to add during an interactive simulation.

6.5 Projection / Pressure Solve

The project(∆t, u) routine does the following:

• Calculate the divergence b (the right-hand side)

• Set the entries of A (see below)

• SolveAp = bwith an appropriate linear solver. (I used Jacobi
and Conjugate Gradient methods)

• Using the p, compute the new velocities un+1 by subtracting
the pressure-gradient from the velocity field un.

6.6 Calculating The Pressure

After advection we have a velocity field that does not satisfy the
incompressibility constraint in equation 5 but we still have to apply
the pressure. What we need to do is set the pressures in the fluid
cells so that the divergence of the entire flow field will be zero. We
can’t iterate through each cell and satisfy ∇ · u = 0, as this would
change the divergence of the neighboring cells. What we have to
do is solve the constraint for all the cells at once. This gives rise to
a large sparse (lots of zero entries) matrix.

We can create a linear equation for the new pressure in every grid
cell. We then combine these divergence and pressure equations into

matrix form and we end up with a system of equations:

Ax = b (10)

Remember that divergence looks like:

∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

Using central differences it will look like:

Di = (∇ · u)i,j,k ≈
ui+ 1

2
,j,k − ui− 1

2
,j,k

∆h
+

ui,j+ 1
2
,k − ui,j− 1

2
,k

∆h
+

ui,j,k+ 1
2
− ui,j,k− 1

2

∆h

(11)

Every row of A corresponds to one equation for one fluid cell. In
this formulation we will setup our matrix such that b is simply our
divergence for every fluid cell. When written out our linear system
takes the following form:


−O1 C1,2 . . . C1,n

C2,1 −O2

...
... −

. . . Cn−1,n−1

Cn,1 · · · Cn,n−1 −On



p1
p2
...
pn

 =


−D1

−D2

...
−Dn

 (12)

Where Di corresponds to the divergences through cell i (11). Oi is
the number of non-solid neighbors of cell i4, and Ci,j takes values
based upon:

Ci,j =

{
1 if cell i is a neighbor of cell j
0 otherwise

A is symmetric and sparse and it is also a very well studied ma-
trix. In 2D it is called the 5 point Laplacian Matrix and in 3D it
is called the 7 Point Laplacian Matrix. Bridson recommends using
the Modified Incomplete Cholesky Conjugate Gradient Level 0 (CG
MIC(0)) algorithm. This method incorporates a pre-conditioner
specially chosen for this matrix form to improve conjugate gradi-
ent convergence. The implemented simulator includes both jacobi
and conjugate gradient solvers. I based my implementation of the
conjugate gradient method on the pseudo code in the back of the
tutorial written by Shewchuk [Shewchuk 1994]. Another resource I
referred to which covered both solvers but not in a form I used was
[Gonzalo Amador 2010].

6.7 Pressure Update

6.7.1 Applying the pressure gradient to the velocity field

We calculate the pressure gradient and subtract it from the the ve-
locity in each cell to ensure that the flow field is divergence free.
Below are formulas for the 3D case.

un+1

i+ 1
2
,j,k

= uni+ 1
2
,j,k −∆t

1

ρ

pi+1,j,k − pi,j,k
∆x

(13)

4in our case for no internal periodic boundaries it is always 4 for 2D or
6 for 3D



vn+1

i,j+ 1
2
,k

= vni,j+ 1
2
,k −∆t

1

ρ

pi,j+1,k − pi,j,k
∆x

(14)

wn+1

i,j,k+ 1
2

= wni,j,k+ 1
2
−∆t

1

ρ

pi,j,k+ − pi,j,k
∆x

(15)

Remember in a MAC grid that pressures are stored in the center so
there are no 1/2 indices.5

7 Implementation Details and Speed

Figure 4: Screen shot of smoke/density in the interactive simulation
of a 128x128x1 grid

7.1 Implementation Notes

A couple of things that I implemented but didn’t discuss in this
writeup are the MacCormack method [A Selle 2008] for advection,
”Vorticity Confinement” which was discussed in the paper [R. Fed-
kiw 2001]. Please refer to the papers and to my source code for
the details of these methods. Because of time-pressure the grid was
eventually implemented as uniform and not staggered. Also a fixed
time step of 0.01 was used and h was set to one in order to simplify
all of the code. Eventually I will correct these simplifications.

7.2 Scale of the Problem

3D fluids on a grid computations scale at O
(
n3
)
. The most

expensive part is the projection step where a matrix of size(
O
(
N3
)
×O

(
N3
))

must be solved6. So the choice and imple-
mentation of the linear solver is very important for performance.
The problem target sizes were a modest 256x256x1 in realtime with

5Implementation note: See Bridson Figure 4.1. Instead of looping over
velocity locations and updating them with pressure differences, loop over
pressure values and update the velocities they affect for greater efficiency.

6NX, NY & NZ are the dimensions of the simulation grid

Figure 5: Screen shot of velocity view in an interactive simulation
of a 128x128x1 grid

GridSize Kernel T ime(ms) Throughput
128x128x64 Advection Velocity 4.467 234
128x128x64 Advection Density 2.828 370
128x128x64 Divergence 0.871 1203
128x128x64 Projection Jacobi 15.519 68
128x128x64 Projection CG 14.205 74
128x128x64 Pressure Apply 1.139 920

Table 1: Throughput is in MegaCells/sec and only one projection
is active at once

aspirations to do 128x128x64 in real time as well. Both are reason-
able and were achieved (with a caveat for copy down of buffers for
rendering7). When all of the buffers are kept on the GPU and don’t
need to be copied over the bus multiple times, performance was
acceptable. Table 1 shows performance for the target grid size of
128x128x64. A 128x128x64 grid has roughly 1 million cells which
is 1 MegaCell per second in our measurements. The slowest kernel
is the projection which has a throughput of 68 MegaCells per sec-
ond for that grid size and that translates to less than 15 milliseconds
of run time. To run all of the kernels at that size takes 25 millisec-
onds which corresponds to 40 FPS. Since 30 FPS is considered a
minimum for interactivity the performance goal was achieved.

7.3 Other Peoples Work and Code

Jos Stam’s Real-time fluid dynamics for games code [Stam 2003]
was reviewed. It helped in understanding some problems I had with
my advection implementation. In code Listing 1 you can see that I
used Stam’s scaling factor of the grid size to get the backwards par-

7OpenCL allows sharing of buffer data with OpenGL. Using that feature
would eliminate the need for the buffer copy to the host for rendering. This
is future work and will be checked into the repository sometime in the near
future.



ticle trace to work. The most useful resources I found were Brid-
son’s book [Bridson 2009] and a much more concise paper from
Ron Fedkiw [R. Fedkiw 2001]. I also found that using the pseudo-
code at the end of [Shewchuk 1994] to implement CG was the best
way to go.

7.3.1 Parallelization

The simulation has a series of steps which are written as straight C
functions and equivalent OpenCL kernels. Porting to OpenCL was
trivial as it was mostly copying the C version of the code and adding
a couple of boilerplate lines to calculate i, j, k8 from the global id
and removing the surrounding triple loops. I did not have time to
optimize the OpenCL code by using local memory and doing block
calculations for all my kernels. The one kernel that was enhanced
with local memory copies of data was the apply pressure step. The
performance of that kernel is discussed in the section titled ”Fell
short of expectations” in the Performance Measurements section.

8 Performance Measurements

Note that all of the performance graphs are at the end of the pa-
per. The performance tests were run on a Macbook Pro with an
Intel Core i7-3720QM CPU @ 2.60GHz, which has 4 cores and 8
logical threads. The GPU was a GeForce GT 650M. Performance
was measured in MegaCells per second. Since each cell takes set
number of floating point calculations it seemed like a reasonable
way to approximate a GigaFlops without having to actually count
the number of floating point operations for an entire time step in the
simulation.

8.1 Performance Expectations

I expected the throughput serial code and the OpenCL on the CPU
to remain constant regardless of problem size, which turned out to
be true. I also expected that on the GPU, throughput would ramp up
with larger grid sizes and workgroups, which turned out to be true
with diminishing returns at the largest grid sizes. I expected the
most time consuming part to be the projection step. Table 1 shows
that projection is roughly 15 milliseconds out of an entire simula-
tion time of 25 milliseconds. This confirms that projection calcula-
tions are more than half (60%) of the entire simulation. However,
buffers being sent and retrieved from the GPU took a long time and
any technique that can minimize them has an advantage in a inter-
active simulation. So while Conjugate Gradient converged in much
fewer iterations and is a much better solver in general, the Jacobi
iterations were faster in an interactive setting where just getting a
valid result was more important than the most accurate. CG had to
send and receive two vectors of size O

(
n3
)

each iteration. With
Jacobi no buffers had to be sent or received as the data could stay
on the GPU9. This caused a big difference in the total time to cal-
culate one time step. However, when OpenCL was targeting the
CPU the buffer transfer costs were eliminated and CG was much
more efficient as it could converge faster and detect convergence
after only a few iterations, while my implementation of Jacobi was
always doing a fixed number of iterations since it lacked a residual
calculation necessary to detect convergence.

8i, j, k represent the indices of the grid cell being computed
9The kernel needed to sync all global memory and therefore could not

use barriers as they only sync workgroups. So the whole kernel had to finish
and be relaunched for each iteration.

8.1.1 Exceeded expectations

One thing that I was surprised to see was that for most simulation
step I didn’t max out the performance of the GPU. The throughput
grew on the GPU with problem size. See Figures 6, 9 and 10. The
kernels that behaved this way were all very simple lookups of 7
values and a few multiplies and adds. The kernels that were more
complex hit their maximum throughput or started to see a drop off
in gains when the grid sizes grew.

I was very surprised by the performance of the OpenCL code run-
ning on the CPU. The auto-vectorization and threading of the code
caused a big speedup from the serial version, and was fast enough
for real-time. The buffer copies to and from the device were ex-
tremely fast, much faster than to the GPU which had to go over
PCI express. If you added the time to simulate multiple frames, the
buffer copying to the device cut down the performance of the to-
tal simulation. This isn’t shown in the performance charts because
I chose to focus on the computational performance. However, the
buffer transfer speed gain can be seen in figure 8 where the per-
formance of the Projection step using a conjugate gradient solver
is used. My conjugate gradient solver is mostly doing dot products
and matrix-vector multiplies but the results of each one was brought
back to the CPU for proper synchronization for further calculation.
Figure 8 shows how the OpenCL version using the CPU is actually
faster for because the buffer transfers dominated the total time for
the simulation step. If the grid sizes went up this advantage would
disappear and the GPU version would be faster as the time would
be bounded by computations and not data transfer.

8.1.2 Fell short of expectations

The simulation did not benefit from using local memory at the block
size I chose or at the simulation grid sizes tested. See Figure 10 for
a throughput comparison on a simple kernel that simply applied the
pressure gradient to the velocity field. I was a little surprised by
this. Looking closer at the kernel and how it loaded values into lo-
cal memory as well as how it utilized the local memory revealed
the cause of this behavior. The local memory only had each en-
try reused 6 times (7 accesses) and the code that transferred the
appropriate global memory data into the local memory involved
5 branches to handle the edge cases. This apparently negated the
gains by locally accessing the data in the main calculation part of
the kernel.

8.2 Source Code Links and Instructions

To get the code:

• Go to http://github.com/kristofe/
OpenCLFluids

• Clone or download the code.

• Switch to branch code for paper. 10

• On a Mac run: make mac

• On a linux run: make linux11

• Then run: ./fluidsim

OSX has all the libraries necessary. I tested on 10.7.5 on a Macbook
Pro, Macbook Air and a Mac Pro. Everything ran well and should
run on any mac running OS X 10.7.5. I tested the linux build on the

10This branch was made to preserve the state of the code at the time of
the writing of this paper.

11On linux make sure you install freeglut-dev with your package manager
to compile and link the code.

http://github.com/kristofe/OpenCLFluids
http://github.com/kristofe/OpenCLFluids


class VM in virtual box, but I only was able to compile the code.
Running it didn’t work because it looked like it couldn’t run the
OpenGL code.
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64x64x64$ 128x128x128$ 256x256x256$
Serial$Code$On$Core$i7$ 4.726$ 3.063$ 3.702$
OpenCL$Code$On$Core$i7$ 43.993$ 42.472$ 34.537$
GeForce$GT$650M$@$WG:$32$ 131.138$ 180.069$ 209.902$
GeForce$GT$650M$@$WG:$64$ 100.028$ 271.539$ 362.065$
GeForce$GT$650M$@$WG:$128$ 127.236$ 332.085$ 495.767$
GeForce$GT$650M$@$WG:$256$ 113.812$ 329.513$ 486.827$
GeForce$GT$650M$@$WG:$512$ 114.608$ 326.904$ 491.443$
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Figure 6: Throughput of the Advect Density Routine in Serial Code and OpenCL on CPU and GPU

64x64x64$ 128x128x128$ 256x256x256$
Serial$Code$On$Core$i7$ 3.47$ 3.396$ 3.368$
OpenCL$Code$On$Core$i7$ 38.843$ 36.692$ 35.736$
GeForce$GT$650M$@$WG:$32$ 63.449$ 85.263$ 184.984$
GeForce$GT$650M$@$WG:$64$ 91.627$ 164.294$ 231.14$
GeForce$GT$650M$@$WG:$128$ 90.975$ 218.718$ 226.636$
GeForce$GT$650M$@$WG:$256$ 94.657$ 221.935$ 207.648$
GeForce$GT$650M$@$WG:$512$ 90.959$ 252.368$ 292.503$
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Figure 7: Throughput of the Advect Velocity Routine in Serial Code and OpenCL on CPU and GPU



64x64x64$ 128x128x128$ 256x256x256$
Serial$Code$On$Core$i7$ 1.619$ 1.615$ 1.634$
OpenCL$Code$On$Core$i7$ 4.518$ 4.704$ 4.844$
GeForce$GT$650M$@$WG:$32$ 2.099$ 2.724$ 3.619$
GeForce$GT$650M$@$WG:$64$ 2.15$ 2.821$ 3.26$
GeForce$GT$650M$@$WG:$128$ 1.748$ 3.291$ 3.301$
GeForce$GT$650M$@$WG:$256$ 2.152$ 2.924$ 3.4$
GeForce$GT$650M$@$WG:$512$ 2.155$ 3.123$ 3.479$
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Figure 8: Throughput of the Projection using Conjugate Gradient Routine in Serial Code and OpenCL on CPU and GPU

64x64x64$ 128x128x128$ 256x256x256$
Serial$Code$On$Core$i7$ 0.429$ 0.396$ 0.42$
OpenCL$Code$On$Core$i7$ 8.467$ 8.604$ 8.843$
GeForce$GT$650M$@$WG:$32$ 12.667$ 22.55$ 32.658$
GeForce$GT$650M$@$WG:$64$ 18.9$ 33.533$ 50.94$
GeForce$GT$650M$@$WG:$128$ 22.501$ 41.138$ 64.751$
GeForce$GT$650M$@$WG:$256$ 21.845$ 37.572$ 61.468$
GeForce$GT$650M$@$WG:$512$ 21.383$ 40.61$ 67.545$
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Figure 9: Throughput of the Projection using Jacobi Iteration Routine in Serial Code and OpenCL on CPU and GPU



64x64x64$ 128x128x128$ 256x256x256$
Serial$Code$On$Core$i7$ 19.672$ 14.453$ 17.016$
OpenCL$Code$On$Core$i7$ 162.843$ 167.464$ 134.244$
GeForce$GT$650M$@$WG:$32$ 224.978$ 339.9$ 425.569$
GeForce$GT$650M$@$WG:$64$ 169.234$ 400.457$ 704.875$
GeForce$GT$650M$@$WG:$128$ 226.886$ 471.853$ 1091.755$
GeForce$GT$650M$@$WG:$256$ 230.842$ 473.045$ 1071.157$
GeForce$GT$650M$@$WG:$256$Local$Memory$Block$Size:$8$ 194.845$ 515.93$ 837.003$
GeForce$GT$650M$@$WG:$512$ 215.331$ 477.255$ 1040.299$
GeForce$GT$650M$@$WG:$512$Local$Memory$Block$Size:$8$ 166.843$ 484.219$ 798.44$
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Figure 10: Throughput of the Pressure Apply Routine in Serial Code and OpenCL on CPU and GPU. However two scenarios using Local
Memory Blocks are shown to compare the performance effect.


