FLUID SIMULATION

Kristofer Schlachter

The Equations

Incompressible Navier-Stokes:

ou
ot 0

“Incompressibility condition”

1
= —(V-uwu—=-Vp+ovViu+F

Breakdown

The derivative of velocity with respect to time.
Calculated at each grid point each time step.

The convection term. This is the self advection

term. In the code we will use the backward parti-
cle trace for this term.

The viscosity term. We are actually going to ig-
nore this term. When you do that you are actually
using the Euler Equations.

External force. Any external forces including
gravity.

Breakdown

The pressure term. p is the density of the fluid
“and p is the pressure. p is whatever it takes to
make the velocity field divergence free. The sim-
ulator will solve for a pressure that makes our
fluid incompressible at each time step.

“density of water p ~ 1000%

Incompressible Euler Equations

If you drop the viscosity term from the incompressible Navier
Stokes equations we get:

@%—(V-u)u%—le:F

ot 0

V-u=0

Such an 1deal fluid with no viscosity is called inviscid. These are
the equations we are going to use.

How do we discretize the

equations?

A Simple Grid

We could put all our fluid variables at the
nodes of a reqgular grid

But this causes some major problems
In 1D: incompressibility means Ju

ox
Approximate at a grid point: U,,, —U,_,

2Ax
Note the velocity at the grid point isn’t

involved!

[Bridson 07]

A Simple Grid Disaster

The only solutions to a_u — () are u=constant
0x
But our numerical version has other solutions:

u

[Bridson 07]

Staggered Grids

Problem is solved if we don’t skip over grid
points

To make it unbiased, we stagger the grid:
put velocities halfway between grid points

In 1D, we estimate divergence at a grid point as:

u Uiy — Uiy
—(x) =~ /5)5
0Xx Ax

Problem solved!

[Bridson 07]

The MAC Grid

From the Marker-and-Cell (MAC) method
[Harlow&Welch’65]

A particular staggering of variables in 2D/3D that
works well for incompressible fluids:

Grid cell (i,j,k) has pressure p;; at its center
x-part of velocity u;,; »; in middle of x-face
between grid cells (i,j,k) and (i+1,j,k)

y-part of velocity v;;,;,, in middle of y-face

z-part of velocity w;;,;,, in middle of z-face

[Bridson 07]

MAC Grid in 2D

[Bridson 07]

Math on a MAC Grid

The partial derivative (0).

of(x,y,2)
0y

= fz,y+1,2) = f(z,y, 2)

The gradient operator (V)

f(a:‘—l—l,y,z)—f(a:,y,z),
Vf(z,y,z)= flx,y+1,2) — f(z,y, 2),
f(xayaz+1) _f(xayaz)

Math on a MAC Grid

The divergence of a vector field (V)

V - u(;p, Y, Z) :(U:B(x + 1, Y, Z) — uaz(xa Y, Z))—I_
(uy(z,y + 1, 2) — uy(z,9, 2))+
(uz(z,y, 2+ 1) —us(z,y, 2))

The Laplacian operator (V) or(V-V)

Vif(z,y,2) =f(z+ 1,y,2) + f(x — 1,y,2)+
flz,y+1,2)+ f(z,y — 1,2)+
fle,y,z+ 1)+ f(z,y,2 — 1) = 6f(x,y, 2)

*There might be a one over h squared term missing

Simulation

— Setu” = advect(u”, At,u™)

— Add uf = u? + AtF

— Setu""! = project(At,u”)

*1 am 1gnoring choosing a time step in this presentation

Advection

(a) (b) (c)

Figure 3: Basic idea behind the advection step. Instead of moving

the cell centers forward in time (b) through the velocity field shown

in (a), we look for the particles which end up exactly at the cell

centers by tracing backwards in time from the cell centers (c).
[Stam 2003]

Advection

// Trace a particle from point (x, y, z) for t time using RK2.
Point traceParticle(float x, float y, float z, float t)
Vector V = getVelocity(x, v, z);
1 V = getVelocity(x+0.5%t*V.x, y+0.5%t*V.y, z+0.5%t*V.z);
Tmid = TG — §Atu (xG) return Point(x, y, z) + t¥V;
/1 Get the interpolated velocity at a point in space.
Vector getVelocity(float x, float vy, float z)
Vector V;
V.x = getInterpolated Value(x/h, y/h-0.5, z/h-0.5, 0);
V.y = getinterpolated Value(x/h-0.5, y/h, z/h-0.5, 1);
V.z = getInterpolated Value(x/h-0.5, y/h-0.5, z/h, 2);
return V;

1 — int erpolat e (qn : xp) // Get an interpolated data value from the grid: '
float getInterpolated Value(float x, float y, float z, int index)

int i = floor(x);

int j = floor(y);

int k = floor(z);

return (i+1-x) * (j+1-y) * (k+1-z) * cell(i, j, k).u[index] +
(x-1) * (j+1-y) * (k+1-z) * cell(i+1, j, k).u[index] +
(i+1-x) * (y-)) * (k+1-z) * cell(i, j+1, k).u[index] +
(x-1) * (y-j) * (k+1-z) * cell(i+1, j+1, k).u[index] +
(i+1-x) * (j+1-y) * (z-k) * cell(d, j, k+1).u[index] +
(x-1) * (j+1-y) * (z-k) * cell(i+1, j, k+1).u[index] +
(i+1-x) * (y-j) * (z-k) * cell(i, j+1, k+1).u[index] +
(x-1) * (y-J) * (z-k) * cell(i+1, j+1, k+1).uf[index];

[David Cline]

Projection

The project(At, u) routine does the following:
Calculate the negative divergence b (the right-hand side)
Set the entries of A
If using CG - Construct the MIC(0) preconditioner.

Solve Ap = b with a linear solver. If using CG then solve
with MICCG(0), 1.e., the PCG algorithm with MIC(0) as pre-
conditioner.

|

Compute the new velocities n" " according to the pressure-

gradient update to u.

Projection

Setting up the divergence vector b (the right hand side)

V - U(CC, 1Y, z) :(ug;(ilf + 1,9, Z) — ’LL;U(CI?, Y, Z))_I_
(uy(z,y + 1, 2) — uy(z,y,2))+
(UZ(CIZ‘, Yy, 2 -+ 1) — uz(CC, Y, Z))

Projection

Setting up the matrix
—1 Bie

Ba1 —Co

_Bn,l T Bn,n—l _Qn -

Where Di corresponds to the divergences through cell i. €i is the number of non-
solid neighbors of cell i, and Si,j takes values based upon the equation:

/

3 < 1 1f cell 2 1s a neighbor of cell j
ij =

0O otherwise

\

This matrix is well known. It is called a 7 Point Laplacian Matrix

Projection

Calculate the pressure gradient and subtract it from the velocity field
to ensure 1t 1s divergence free:

n+1 n Atl Pi+1,5,k — DPi,j.k

U . : ., 1 .4, —
’L—I—%,_],k 1+ 5,7,k 0 AT

e L pij+1,6 — Dijk
,J+ Lk Atp Ax

1 L L
wn_l_l 1 — wn 2 — At Pioj bt = Pioj,
0,5, k+ 5 GV L 0 Az

Implementation

Mapping to Mechanisms: Stencils

Common example ("“5-point
stencil”):

n—_l—l_ 1

n n n
upj = (Autuly

n n
+ Ui+ uijy)

Sequential
OpenMP?
MPI?

GPU — 2D?
GPU — 3D?

Remember this slide from the last lecture?

Visualization Parallel Patterns

Implementation

Thoughts on optimization for parallel execution

The most time consuming part of the sim is the pressure solve so the optimization
should start with solving it quickly.

Optimizations for serial & CPU:

Blocking: Cache coherent.
Can send blocks to different cores

Optimizations for GPU:

Do blocking again using local memory to store
each block.

For 3D use slicing, 3 Slices at a time putting
middle slice (block) 1n local memory.

