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Abstract

This is a short tutorial on a specific method of Computational Fluid
Dynamics, which is a challenging subject to learn. Much of this
report will be to introduce all of the topics necessary to understand
and build a second order accurate fluid solver. Very little previous
knowledge in the subject will be assumed and explanations will be
given with the goal of being able to implement a solver on the CPU
and GPU.
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Introduction

I have explored fluid dynamics solvers in the past and I have been
frustrated with implementing more than just a simple smoke or dye
simulation. It is challenging to start with something like Jos Stam’s
solver that he describes in Real-Time Fluid Dynamics For Games
[Stam 2003] as well as Stable Fluids[Stam 1999] and extend it to do
more. The math, especially the notation for someone who has not
taken vector calculus or differential equations, is hard to penetrate.
However, rececently there have been papers and a book that makes
this task a little easier. In this project I used Robert Bridson’s book,
”Fluid Simulation for Computer Graphics.”[Bridson 2009] which is
in turn based upon the notes for a Siggraph course on Fluid Sim-
ulation. There have also been papers that have tried to condense
the knowledge necessary to write a complete solver into a short pa-
per[David Cline ] while it is ironic that these papers are incomplete
they still are quite a good start.

1 What does Semi-Lagrangian mean?

There a couple of ways to think about simulating fluids. They basi-
cally fall into two camps. The Lagrangian point of view where we
treat the world like a particle system. We give particles properties
which we track as the particle moves. The other viewpoint is the
Eulerian viewpoint where you have fixed points in space usually
placed in a grid layout where you measure things as they go past. If
you think of it as measuring the weather the Lagrangian way would
be using weather balloons floating with the wind. The Eulerian way
would be to place sensors on the ground measuring the weather over
time. The simulator described in this report falls somewhere in be-
tween. It uses a grid to store and track fluid properties but it uses
virtual particles (more on that later) to help compute where things
are going (advection). It is called Semi-Larangian, because it uses
virtual particles to handle the advection.

2 Navier Stokes

The governing equations of fluid flow that we will start with are
called the incompressible Navier Stokes equations.

@u

@t
+ u ·ru+

1
⇢
rp = g + vr ·ru (1)

⇤e-mail:ks228@cs.nyu.edu

which can be rewritten as:

@u

@t
= �(r · u)u� 1

⇢
rp+ vr2u+ F (2)

r · u = 0 (3)

The equation is broken down as follows:

@u

@t

The derivative of velocity with respect to time.
Calculated at each grid point each time step.

�(r · u)u The convection term. This is the self advection
term. In the code we will use the backward parti-
cle trace for this term.

� 1
⇢

rp The pressure term. ⇢ is the density of the fluid
( for water ⇢ ⇡ 1000 kg

m

2 )and p is the pressure.
Since we are simulating incompressible fluids the
pressure term will be coupled with equation 11 to
make sure the fluid remains incompressible. This
term will be solved by setting up a matrix —-for
a fluid cell with all its neighbors as non-solid it
will be 4 in cell(i,j,k) and 1 in c(i+-1,j+-1,k+-1).

vr2u or
vr ·ru

The viscosity term. We are actually going to ig-
nore this term. When you do that you are actually
using the Euler Equations.

F External force. Any external forces including
gravity.

3 Euler Equations

If you drop the viscosity term from the incompressible Navier
Stokes equations we get:

@u

@t
+

1
⇢
rp = F (4)

r · u = 0 (5)

Such an ideal fluid with no viscosity is called inviscid. These are
the equations we are going to use.

4 Mathematical Notation

Just a quick introduction to some Mathematical operators and what
they turn into when you discretize them on a grid.

The partial derivative (@). In this paper it will be the cen-
tral difference:

@f(x, y, z)
@y

=
f(x, y + h, z)� f(x, y � h, z)

h
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How do we discretize the 
equations?



A Simple Grid

§ We could put all our fluid variables at the 
nodes of a regular grid

§ But this causes some major problems
§ In 1D: incompressibility means

§ Approximate at a grid point:

§ Note the velocity at the grid point isn’t 
involved! 

∂u
∂x

= 0

ui+1 − ui−1
2Δx

= 0

[Bridson 07]



A Simple Grid Disaster

§ The only solutions to               are u=constant

§ But our numerical version has other solutions: 

∂u
∂x

= 0

u

x

[Bridson 07]



Staggered Grids

§ Problem is solved if we don’t skip over grid 
points

§ To make it unbiased, we stagger the grid:
put velocities halfway between grid points

§ In 1D, we estimate divergence at a grid point as:

§ Problem solved!

∂u
∂x
(xi ) ≈

ui+ 12 − ui− 12
Δx

[Bridson 07]



The MAC Grid

§ From the Marker-and-Cell (MAC) method 
[Harlow&Welch’65]

§ A particular staggering of variables in 2D/3D that 
works well for incompressible fluids:

§ Grid cell (i,j,k) has pressure pi,j,k at its center

§ x-part of velocity ui+1/2,jk in middle of x-face 
between grid cells (i,j,k) and (i+1,j,k)

§ y-part of velocity vi,j+1/2,k in middle of y-face

§ z-part of velocity wi,j,k+1/2 in middle of z-face

[Bridson 07]



ui− 12, j ui+ 12, jvi, j− 12

MAC Grid in 2D

pi, j pi+1, j

pi, j−1

pi, j+1

pi−1, j

vi, j+ 12

[Bridson 07]
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you think of it as measuring the weather the Lagrangian way would
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time. The simulator described in this report falls somewhere in be-
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virtual particles (more on that later) to help compute where things
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2 Incompressible Navier Stokes

The governing equations of fluid flow that we will start with are
called the incompressible Navier Stokes equations.
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which can be rewritten as:

@u

@t
= �(r · u)u� 1

⇢
rp+ vr2u+ F (2)

r · u = 0 (3)

The equation is broken down as follows:

@u

@t

The derivative of velocity with respect to time.
Calculated at each grid point each time step.

�(r · u)u The convection term. This is the self advection
term. In the code we will use the backward parti-
cle trace for this term.

� 1
⇢

rp The pressure term. ⇢ is the density of the fluid
aand p is the pressure. p is whatever it takes to
make the velocity field divergence free. The sim-
ulator will solve for a pressure that makes our
fluid incompressible at each time step.

adensity of water ⇢ ⇡ 1000 kg

m

2

vr2u or
vr ·ru

The viscosity term. We are actually going to ig-
nore this term. When you do that you are actually
using the Euler Equations.

F External force. Any external forces including
gravity.

3 Incompressible Euler Equations

If you drop the viscosity term from the incompressible Navier
Stokes equations we get:

@u

@t
+ (r · u)u+

1
⇢
rp = F (4)

r · u = 0 (5)

Such an ideal fluid with no viscosity is called inviscid. These are
the equations we are going to use.

4 Mathematical Notation

Just a quick introduction to some Mathematical operators and what
they turn into when you discretize them on a grid.
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The divergence of a vector field (r·) produces the scalar field
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The Laplacian operator (r2) or (r ·r). is the dot product of two
gradient operators.
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To apply r2 to a vector field we apply the operator to each vector
component separately.
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In the simulation we store various values in grids (velocity, pres-
sure, fluid concentration, etc) at various points in space. However
the obvious choice of a uniform grid isn’t the best method. There is
an old technique developed in the early days of CFD called marker-
and-cell (MAC) method for solving incompressible flow problems.
The main contribution that method made to modern CFD was the
introduction of the staggered grid. The Mac grid method discretizes
space into square or cubic cells with width h. Each cell has a pres-
sure, p defined at its center. It also has a velocity, u = (u
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but the components of the velocity are placed at the centers of the
cell faces, u
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on the x-min face and so on as shown in Figures 1
and 2.

Figure 1: 2D MAC Cell

Figure 2: 3D MAC Cell

The rationale for putting the velocity components on the faces is
that we can use accurate central differences for the pressure gradi-
ent and for the divergences without the disadvantages of a regular
grid. Central differences are O
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handled carefully. If you use the naive way of (6)

@q

@x
⇡ q

i+1 � q
i�1

2�x
(6)

*There might be a one over h squared term missing



Simulation

You never use the value at q
i

! Well how about using a forward like
(7) or backwards difference?

@q

@x
⇡ q

i+1 � q
i

�x
(7)

Well they are only O (�x) accurate. However it turns out the at
the MAC grid solves the problem by using a staggered grid where
we don’t skip over any indices and it keeps our O

�
�x2

�
accuracy.

You can then estimate the derivative at grid point i in the staggered
grid as

@q
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⇡

q
i+1/2 � q

i�1/2

�x
(8)

It turns out that in the Pressure Projection stage, the staggered grid
is very useful. However there are problems with it, specifically in
order to evaluate velocity anywhere in the grid you have to do a
trilinear interpolation of each component. That is three trilinear in-
terpolations. For 2D it is a bilinear interpolation per component of
velocity which adds up to two bilinear interpolations total per ve-
locity sample. You also pay the same penalty if you want to sample
pressure outside of a cell center. However, this is made up for by
the increased accuracy of the solver.

5.1 How to deal with half indices

The half indices simplify the formulas but they make coding a little
harder. The convention that Bridson uses is to put the lower half
indices at the same index as the pressure. So he uses the following:

p[i][j][k] = p
i,j,k

u
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[i][j][k] = u
i�1/2,j,k
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size array. The velocity x component array is sized (n
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,
the y component array is sized n
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·(n
y
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z

and the z component
array is sized n
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z
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6 Algorithm

6.1 Simulation

Start with an initial divergence-free velocity field u

• For time step n = 0,1,2, ...

– Determine a good timestep �t to go from time t
n

to
time t

n+1

– Set uA = advect(un,�t, un)

– Add uB = uA +�tF

– Set un+1 = project(�t, uB)

6.2 Choosing a Timestep

A great property of using a semi-Lagrangian solver is that it can
handle large time steps without blowing up. You can get away with
picking a �t that suits your own accuracy versus frame-time pref-
erence. However Bridson mentions that you can get strange results

if you set �t too high. So he recommend using a formula put forth
by [N Foster 2001]where the strategy is to limit the time step so that
the furthest particle trajectory is traced five cell widths:

�t  5�x

u
max

(9)

Bridson recommends calculating u
max

the following way:

u
max

= max (|u|) +
p

�x|F | (10)

Where F are the body forces and �x is a grid cell width. This is
slightly more robust because it also takes into account the forces
acting on the fluid, it is always positive and can’t cause a divide by
zero.

6.3 Advection

Advection (or convection) of substances in the fluid or of the
fluid on itself propagates according to the expression �(u · r)u.
This term makes the Navier-Stokes and Euler Equations non-linear.
Some methods use finite differencing [N Foster 1996] and this is
only stable when the time step is small enough to satisfy �t <
�h/u

max

where h is the grid cell width. Bridson uses a technique
made popular by Jos Stam [Stam 1999] that results in an uncon-
ditionally stable solver. No matter how large a time step the solver
takes the simulation will never ”blow up.”2. This method is referred
to as the backwards particle trace. This method has several advan-
tages, most importantly it is unconditionally stable. This can be
seen because the new field is simply an interpolated sampling of
the previous field and as a result the maximum value of the new
field is never larger than the largest value of the previous field. It is
also simple to implement.

Figure 3: Basic idea behind the advection step. Instead of moving

the cell centers forward in time (b) through the velocity field shown

in (a), we look for the particles which end up exactly at the cell

centers by tracing backwards in time from the cell centers (c).

[Stam 2003]

6.3.1 Semi-Lagrangian Advection Method

In the simulator the advection step can be encapsulated by the equa-
tion:

qn+1 = advect(u,�t, qn)

Stam [Stam 1999] explains the method of backward particle trace:
”At each time step all the fluid properties are moved by the flow
field u. To obtain the the velocity at point x

G

at the new time
t + �t, we backtrace the point x

G

through the flow field u over

2Stam based the method upon a technique to solve partial differential
equations known as the method of characteristics. See appendix A of his
paper [Stam 1999]

*I am ignoring choosing a time step in this presentation
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n

to
time t

n+1

– Set uA = advect(un,�t, un)
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handle large time steps without blowing up. You can get away with
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if you set �t too high. So he recommend using a formula put forth
by [N Foster 2001]where the strategy is to limit the time step so that
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Where F are the body forces and �x is a grid cell width. This is
slightly more robust because it also takes into account the forces
acting on the fluid, it is always positive and can’t cause a divide by
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6.3 Advection

Advection (or convection) of substances in the fluid or of the
fluid on itself propagates according to the expression �(u · r)u.
This term makes the Navier-Stokes and Euler Equations non-linear.
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where h is the grid cell width. Bridson uses a technique
made popular by Jos Stam [Stam 1999] that results in an uncon-
ditionally stable solver. No matter how large a time step the solver
takes the simulation will never ”blow up.”2. This method is referred
to as the backwards particle trace. This method has several advan-
tages, most importantly it is unconditionally stable. This can be
seen because the new field is simply an interpolated sampling of
the previous field and as a result the maximum value of the new
field is never larger than the largest value of the previous field. It is
also simple to implement.

Figure 3: Basic idea behind the advection step. Instead of moving

the cell centers forward in time (b) through the velocity field shown

in (a), we look for the particles which end up exactly at the cell

centers by tracing backwards in time from the cell centers (c).
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6.3.1 Semi-Lagrangian Advection Method

In the simulator the advection step can be encapsulated by the equa-
tion:

qn+1 = advect(u,�t, qn)

Stam [Stam 1999] explains the method of backward particle trace:
”At each time step all the fluid properties are moved by the flow
field u. To obtain the the velocity at point x

G

at the new time
t + �t, we backtrace the point x

G

through the flow field u over

2Stam based the method upon a technique to solve partial differential
equations known as the method of characteristics. See appendix A of his
paper [Stam 1999]



Advection

a time �t. This traces backward partially along the streamlines of
the flow field. The new velocity at the point x

G

, had its previous
location a time �t ago.”
The tricky part is how you calculate the previous location. You
can try to use Forward Euler step method, which simply evaluates
the velocity at x

G

and updates the position of x
G

based upon this
velocity. You end up arriving at point x

p

which is your back traced
position:

x
p

= x
G

+�tu(x
G

)

Where u(x
G

) is evaluating the velocity field u at grid position x
G

to get the velocity to travel backwards to x
p

. Because the velocity
is not constant this can be inaccurate. Bridson recommends using
at least Runge-Kutta order two interpolation(RK2).
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Again where u(x
G

) is evaluating the velocity field u at grid po-
sition x

G

to get a position half a time step away at x
mid

which
you will use to sample the velocity field again u(x

mid

) which is
the velocity which will be used for the whole time step. This can
be viewed as like Forward Euler where you take a half an Euler
step, and then use the velocity at this intermediate location as an
approximate average velocity over the whole time step.

Putting this together into a formula, our basic semi-Lagrangian for-
mula, assuming the particle-tracing algorithm has tracked back to
location x

p

(typically with RK2 above), is

qn+1
G

= interpolate (qn, x
p

)

Here qn+1
G

is the new value of the quantity(velocity, density, tem-
perature, etc.) you are advecting at a grid point G, qn is the field of
the current values for that quantity and x

p

is the back traced posi-
tion using the the flow field.

Many people get confused by the backwards particle trace. Here is
a figure from Cline[David Cline ] that shows how it would translate
into code:

6.4 Add Body Forces

At this point you would add any external forces to the flow field u.
This is the correct point to add any forces a user might want to add
during an interactive simulation.

6.5 Projection / Pressure Solve

The project(�t, u) routine does the following:

• Calculate the negative divergence b (the right-hand side)

• Set the entries of A

• If using CG - Construct the MIC(0) preconditioner.

• Solve Ap = b with a linear solver. If using CG then solve
with MICCG(0), i.e., the PCG algorithm with MIC(0) as pre-
conditioner.

• Compute the new velocities nn+1according to the pressure-
gradient update to u.

Figure 4: Pseudo code for the functions to trace a particle back-

wards through the velocity field

6.6 Calculating the pressure

After advection we have a velocity field that does not satisfy in-
compressibility constraint in equation 5 but we still have to apply
the pressure. We need to do is set the pressures in the fluid cells so
that the divergence of the entire flow field will be zero. We can’t
iterate through each cell and satisfy the r · u = 0. This would
change the divergence of the neighboring cells. What we have to
do is solve the constraint for all the cells at once. This gives rise to
a large sparse (lots of zero entries) matrix.

We can create linear equation for the new pressure in every grid
cell. We then combine the divergence equation and the pressure
equation in the matrix and we end up with a system of equations of
the form:

Ax = b (11)

Remember that divergence looks like:
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, had its previous
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. Because the velocity
is not constant this can be inaccurate. Bridson recommends using
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is the back traced posi-
tion using the the flow field.

Many people get confused by the backwards particle trace. Here is
a figure from Cline[David Cline ] that shows how it would translate
into code:
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At this point you would add any external forces to the flow field u.
This is the correct point to add any forces a user might want to add
during an interactive simulation.

6.5 Projection / Pressure Solve

The project(�t, u) routine does the following:

• Calculate the negative divergence b (the right-hand side)

• Set the entries of A

• If using CG - Construct the MIC(0) preconditioner.

• Solve Ap = b with a linear solver. If using CG then solve
with MICCG(0), i.e., the PCG algorithm with MIC(0) as pre-
conditioner.

• Compute the new velocities nn+1according to the pressure-
gradient update to u.
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6.6 Calculating the pressure

After advection we have a velocity field that does not satisfy in-
compressibility constraint in equation 5 but we still have to apply
the pressure. We need to do is set the pressures in the fluid cells so
that the divergence of the entire flow field will be zero. We can’t
iterate through each cell and satisfy the r · u = 0. This would
change the divergence of the neighboring cells. What we have to
do is solve the constraint for all the cells at once. This gives rise to
a large sparse (lots of zero entries) matrix.

We can create linear equation for the new pressure in every grid
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perature, etc.) you are advecting at a grid point G, qn is the field of
the current values for that quantity and x

p

is the back traced posi-
tion using the the flow field.

Many people get confused by the backwards particle trace. Here is
a figure from Cline[David Cline ] that shows how it would translate
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This is the correct point to add any forces a user might want to add
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gradient update to u.
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After advection we have a velocity field that does not satisfy in-
compressibility constraint in equation 5 but we still have to apply
the pressure. We need to do is set the pressures in the fluid cells so
that the divergence of the entire flow field will be zero. We can’t
iterate through each cell and satisfy the r · u = 0. This would
change the divergence of the neighboring cells. What we have to
do is solve the constraint for all the cells at once. This gives rise to
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We can create linear equation for the new pressure in every grid
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The tricky part is how you calculate the previous location. You
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(typically with RK2 above), is
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Here qn+1
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is the new value of the quantity(velocity, density, tem-
perature, etc.) you are advecting at a grid point G, qn is the field of
the current values for that quantity and x

p

is the back traced posi-
tion using the the flow field.

Many people get confused by the backwards particle trace. In figure
4 [David Cline ] that shows how it would translate into code:

6.4 Add Body Forces

At this point you would add any external forces to the flow field u.
This is the correct point to add any forces a user might want to add
during an interactive simulation.

6.5 Projection / Pressure Solve

The project(�t, u) routine does the following:

• Calculate the negative divergence b (the right-hand side)

• Set the entries of A

• If using CG - Construct the MIC(0) preconditioner.

• Solve Ap = b with a linear solver. If using CG then solve
with MICCG(0), i.e., the PCG algorithm with MIC(0) as pre-
conditioner.

• Compute the new velocities nn+1according to the pressure-
gradient update to u.

Figure 4: Pseudo code for the functions to trace a particle back-

wards through the velocity field

[David Cline ]

6.6 Calculating the pressure

After advection we have a velocity field that does not satisfy in-
compressibility constraint in equation 5 but we still have to apply
the pressure. We need to do is set the pressures in the fluid cells so
that the divergence of the entire flow field will be zero. We can’t
iterate through each cell and satisfy the r · u = 0. This would
change the divergence of the neighboring cells. What we have to
do is solve the constraint for all the cells at once. This gives rise to
a large sparse (lots of zero entries) matrix.

We can create linear equation for the new pressure in every grid
cell. We then combine the divergence equation and the pressure
equation in the matrix and we end up with a system of equations of
the form:
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a time �t. This traces backward partially along the streamlines of
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, had its previous
location a time �t ago.”
The tricky part is how you calculate the previous location. You
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perature, etc.) you are advecting at a grid point G, qn is the field of
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tion using the the flow field.

Many people get confused by the backwards particle trace. In figure
4 [David Cline ] that shows how it would translate into code:

6.4 Add Body Forces

At this point you would add any external forces to the flow field u.
This is the correct point to add any forces a user might want to add
during an interactive simulation.

6.5 Projection / Pressure Solve

The project(�t, u) routine does the following:

• Calculate the negative divergence b (the right-hand side)

• Set the entries of A

• If using CG - Construct the MIC(0) preconditioner.

• Solve Ap = b with a linear solver. If using CG then solve
with MICCG(0), i.e., the PCG algorithm with MIC(0) as pre-
conditioner.

• Compute the new velocities nn+1according to the pressure-
gradient update to u.

Figure 4: Pseudo code for the functions to trace a particle back-

wards through the velocity field

[David Cline ]

6.6 Calculating the pressure

After advection we have a velocity field that does not satisfy in-
compressibility constraint in equation 5 but we still have to apply
the pressure. We need to do is set the pressures in the fluid cells so
that the divergence of the entire flow field will be zero. We can’t
iterate through each cell and satisfy the r · u = 0. This would
change the divergence of the neighboring cells. What we have to
do is solve the constraint for all the cells at once. This gives rise to
a large sparse (lots of zero entries) matrix.

We can create linear equation for the new pressure in every grid
cell. We then combine the divergence equation and the pressure
equation in the matrix and we end up with a system of equations of
the form:

Ax = b (11)

Remember that divergence looks like:

r · u =
@u

x

@x
+

@u
y

@y
+

@u
z

@z
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on a MAC1 grid:

@f(x, y, z)
@y

= f(x, y + 1, z)� f(x, y, z)

The gradient operator (r). is a vector of partial derivatives:

r =

✓
@

@x
,
@

@y
,
@

@z

◆

We will use central differences so a 3D gradient on a MAC grid will
look like:

rf(x, y, z) =

0

B@
f(x+ 1, y, z)� f(x, y, z),

f(x, y + 1, z)� f(x, y, z),

f(x, y, z + 1)� f(x, y, z)

1

CA

The divergence of a vector field (r·) produces the scalar field

r · u =
@u

x

@x
+

@u
y

@y
+

@u
z

@z

We will use central differences so a 3D gradient on a MAC grid will
look like:

r · u(x, y, z) =(u
x

(x+ 1, y, z)� u
x

(x, y, z))+

(u
y

(x, y + 1, z)� u
y

(x, y, z))+

(u
z

(x, y, z + 1)� u
z

(x, y, z))

The Laplacian operator (r2) or (r ·r). is the dot product of two
gradient operators.

r2 = r ·r =
@2

@x2
+

@2

@y2
+

@2

@z2

We will use central differences so a 3D gradient on a MAC grid will
look like:

r2f(x, y, z) =f(x+ 1, y, z) + f(x� 1, y, z)+

f(x, y + 1, z) + f(x, y � 1, z)+

f(x, y, z + 1) + f(x, y, z � 1)� 6f(x, y, z)

To apply r2 to a vector field we apply the operator to each vector
component separately.

r2u(x, y, z) =

0

B@

r2u
x

(x, y, z),

r2u
y

(x, y, z),

r2u
z

(x, y, z)

1

CA

1we will discuss the setup of a MAC grid later. Basically the velocities
are stored on the cell edges so you only need to take a neighboring value to
get a central difference

5 MAC Grid

In the simulation we store various values in grids (velocity, pres-
sure, fluid concentration, etc) at various points in space. However
the obvious choice of a uniform grid isn’t the best method. There is
an old technique developed in the early days of CFD called marker-
and-cell (MAC) method for solving incompressible flow problems.
The main contribution that method made to modern CFD was the
introduction of the staggered grid. The Mac grid method discretizes
space into square or cubic cells with width h. Each cell has a pres-
sure, p defined at its center. It also has a velocity, u = (u

x

, u
y

, u
z

),
but the components of the velocity are placed at the centers of the
cell faces, u

x

on the x-min face and so on as shown in Figures 1
and 2.

Figure 1: 2D MAC Cell

Figure 2: 3D MAC Cell

The rationale for putting the velocity components on the faces is
that we can use accurate central differences for the pressure gradi-
ent and for the divergences without the disadvantages of a regular
grid. Central differences are O

�
�x2

�
accurate but they have to be

handled carefully. If you use the naive way of (6)

@q

@x
⇡ q

i+1 � q
i�1

2�x
(6)

Setting up the divergence vector b (the right hand side)



Projection
Setting up the matrix

Using central differences it will look like:

(r · u)
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(12)

Every row of A corresponds to one equation for one fluid cell. In
this formulation, we will setup our matrix such that b is simply
our negative divergence for every fluid cell. When written out, our
linear system takes the following form:
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Where D
i

corresponds to the divergences through cell i, (formula
12). ⌦

i

is the number of non-solid neighbors3 of cell i, and �
i,j

takes values based upon the below equation:

�
i,j

=

(
1 if cell i is a neighbor of cell j
0 otherwise

A is clearly symmetric and sparse, it is also a very well studied
matrix. In 2D it is called the 5 point Laplacian Matrix in 3D it
is called the 7 Point Laplacian Matrix. Bridson recommends using
the Modified Incomplete Cholesky Conjugate Gradient Level 0 ( CG
MIC(0)) algorithm. This is the conjugate gradient algorithm with
a specially chosen, easy to compute pre-conditioner that exploits
this specific type of matrix. I did not write my own sparse matrix
implementation or CG MIC(0) code. Implementing sparse matrices
and CG is probably bigger project than writing the simulator. I used
Boost’s version. For a nice introduction to the conjugate gradient
method read [Shewchuck 1994]. For a sample implementation of
different solvers and their performance when applied to this matrix
see [Gonzalo Amador 2010].

6.7 Pressure Update

6.7.1 Applying the pressure gradient to the velocity field

We calculate the pressure gradient and subtract it from the the ve-
locity in each cell to ensure that the flow field is divergence free.
Below are formulas for the 3D case.
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3in our case for no internal periodic boundaries it is always 4 for 2D or
6 for 3D

remember in a MAC grid pressures are stored in the center so there
are no 1/2 indices.4
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Where Di corresponds to the divergences through cell i. Ωi is the number of non-
solid neighbors of cell i, and βi,j takes values based upon the equation:

This matrix is well known.  It is called a 7 Point Laplacian Matrix 
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Calculate the pressure gradient and subtract it from the velocity field 
to ensure it is divergence free:
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Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

un+1
i ,j =

1

h2
(�4uni ,j+uni�1,j+uni+1,j

+ uni ,j�1 + uni ,j+1)

• Sequential

• OpenMP?

• MPI?

• GPU — 2D?

• GPU — 3D?

What if there’s geometry?

Visualization Parallel Patterns

Remember this slide from the last lecture?



Implementation

Optimizations for serial & CPU:

Blocking: Cache coherent. 
Can send blocks to different cores

Optimizations for GPU:

Do blocking again using local memory to store 
each block.
For 3D use slicing, 3 Slices at a time putting 
middle slice (block) in local memory.

Thoughts on optimization for parallel execution
The most time consuming part of the sim is the pressure solve so the optimization 
should start with solving it quickly.


