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1 Introduction

Fast Fourier Transform is one of the most important numerical algorithms in history. It has
wide range of applications: audio signal processing, medical imaging, image processing, pattern
recognition, computational chemistry, error correcting codes and spectral methods for PDE’s.
The goal of this project is to implement an OpenCL based FFT algorithm that has comparable
performance with existing open source and vendor libraries.

1.1 Discrete Fourier Transform

To make this report more self-contained, first let’s give a brief introduction of Discrete Fourier
Transform (DFT). The following refers the Wikipedial6].

The sequence of N complex numbers zg, ..., £, _1 is transformed into another sequence of N com-
plex numbers according to the DFT formula:
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DFT can be expensive to compute directly using the above formula. For each k, we must execute:
N complex multiplies and N —1 complex adds. The total cost of direct computation of an N-point
DFT is N? complex multiplies and N(N — 1) complex adds. The overall runtime complexity is
O(N?).

1.2 Fast Fourier Transform

The FFT provides us with a much more efficient way of computing the DFT. The FFT requires
only O(NlogN) computations to compute the N-point DFT[7].

The Cooley-Tukey algorithm is by far the most commonly used FFT algorithm. The idea is to
build a DFT out of smaller and smaller DFTs by decomposing the input into smaller and smaller
subsequences. It exploits the symmetries of the complex exponentials W]’\“,” = e—(@2mxn), W]’f,” are
called twiddle factors.

Assume N = 2m (a power of 2). The N-point DFT can be written as:

VO<k<N-1:(vx=E(k)+WgO(k))

where %—point DFT of even samples is:
N/2-1
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and %—point DFT of odd samples is:
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The Cooley-Tukey algorithm is to divide the transform into two pieces of size % at each step, and

is therefore limited to power-of-two sizes, but any factorization can be used in general. These are
called the radix-2 and mixed-radix cases. Although the basic idea is recursive, most traditional
implementations rearrange the algorithm to avoid explicit recursion.

2 Related work

There are many existing papers discussing this problem[4][5][3][2]. Many high performance open
source and vendor FFT libraries are widely used by research and industry. CUFFT is NVidia’s
implementation of an FFT solver on their CUDA architecture. CUFFT employs a radix-n algo-
rithm, and operates by taking a user-defined plan as input which specifies the parameters of the
transform. It then optimally splits the transform into more manageable sizes if necessary. These
sub-FFT’s are then farmed out to the individual blocks on the GPU itself which will handle the
FFT computation.

FFTW]1] is a library of FFT routines which will provide optimized code for a given transform.
FFTW was the interface from which CUDA was derived as it also creates a plan for a given trans-
form and can then continually execute it. FFTW achieves its competitive performance by actually
processing the transform initially when the plan is created. It checks through a series of optimized
codes to see which one performs best for the given transform on the current architecture. These
optimized routines are known as codelets and are chosen at runtime. The user can also create a
series of codelets for FFTW to choose from. The best performance for FFT on any architecture
necessitates some form of specialized codes for a given subset of problem sizes.

Apple FFT is an OpenCL based FFT library that uses similar planning techniques described
above. It’s implementation is based on this paper[5]. It generates optimized code for current
platform and device (CPU or GPU) on the fly and achieved competitive performance.

3 Algorithm Design

3.1 Stockham’s FFT algorithm

Our algorithm is based on Stockham’s FFT algorithm described in this paper [3]. The original
algorithm maps well on SIMD processors, but it does not take advantage of cache system, since
its memory access pattern is not good. Therefore, we will do some optimization (will be described
in the next section) on the original algorithm to improve memory access pattern.

The following illustrates the psudeo-code of radix-2 Stockham’s FFT:

Data: input array in, output array out, size n
fort=1; t<logn; t=t+1do
forj=0; j< & j=j+1do
fork=0; k<27 k=k+1do
theta = —25—,,]“
out[j2' + k] = in[j2'71 + k] + € "etoin 201 + k + 2]
out[j2" + k + 2!71 = in[j2 71 + k] — €' thetein 20 4 k4 2]
end
end
swap(in, out);
end

Algorithm 1: Stockham’s radix-2 FFT algorithm



This pseudo-code illustrates the nested loop implementation of Stockham FFT algorithm. The
FFT algorithm proceeds in logn steps and during each step j, the output array is conceptually
divided into data chunks of size 2j. Similarly, the input chunks are conceptually divided into data
chunks of size 25 — 1 and two input data chunks are mapped onto the appropriate output chunks.
Therefore, the time complexity of this algorithm is O(nlogn), and space complexity is O(n).

3.2 Problem scale

We plan to implement this algorithm for both CPU and GPU. For CPU, our experimental platform
has 24GB memory per node, so the maximum problem size is 23° (16 bytes of memory per element
for single precision). For GPU, the platform available to us (Tesla M2070) has 6GB of global
memory, which limits our problem size to 228. Typically we have no minimum scale for CPU,
since data transfer overhead is cheap. But for GPU, data transfer and command queue is the
bottleneck when the problem size is small. We found that it’s more economical to use CPU if the
problem size is below 218,

4 Implementation

4.1 OpenCL kernel

We have implemented three different kinds of kernels: radix-2, 4 and 8. We will see an improving
trend of performance as radix increases. Higher radix makes better use of private memory to
processes several iterations per kernel, hence reduce the need of global communication. However,
even higher radix does not necessarily improve performance, as they may exceed the size of private
memory and have to use much slower local memory.

Below is the code snippet of a radix-2 kernel:

#define TWOPI 6.28318530718

__kernel void fft_radix2(__global float2* src, /*input array*/
__global float2* dst, /*output array*/
const int p, /*block sizex/
const int t) { /*number of threads*/

const int gid = get_global_id(0);
const int k = gid & (p - 1);

src += gid;

dst += (gid << 1) - k;

const float2 inl = src[0];
const float2 in2 = src[t];

const float theta = -TWOPI * k / p;

float cs;

float sn = sincos(theta, &cs);

const float2 temp = (float2) (in2.x * cs - in2.y * sn, in2.y * cs + in2.x * sn);

dst[0] = inl + temp;
dst[p] = inl - temp;

This kernel directly implements the inner two loops of Algorithm 1 described above. The host
program provides the outermost loop. The kernel is called by host program logN times with N/2



threads. At the end of every outermost iteration, the input and output array pointer is swapped,
and block size increases by twice. We use a vector type float2 to represent a complex number,
in order to realize more contiguous memory accesses. We also use sincos() OpenCL function to
calculate twiddle factor using only one call, which is faster than seperate sin() and cos() calls.
We extend this kernel to a radix-4 kernel by merging two consecutive iterations. Two iterations of
the FFT radix-2 algorithm will combine 4 sub-sequences of length p into one sequence of length
4p, corresponding to a radix-4 algorithm. The kernel is called by host program (logN)/2 times
with N/4 threads. The block size increases by 4 times after every iteration. Similarly, a radix-8
kernel can be developed. It is called by host program (logN)/3 times with N/8 threads. The
block size increases by 8 times after every iteration.

4.2 Performance expectation

The algorithm is very easy to parallelize, due to the nature of its triple loop structure and inde-
pendent memory access. Floating point computation is the most time-consuming operations in
the kernel. Each kernel involves one sincos() function call and several floating point addition
and multiplications.

Global memory access is the secondary time-consuming step. A radix-2, 4 and 8 kernel has 4,
8, 16 global memory reads+writes in each thread, respectively. Therefore, the total number of
global memory accesses is 2N for each iteration. At the first few iterations, write operations are
contiguous, since p is small. However after that, write operations are no longer contiguous.

This algorithm is neither a computation bound or memory bound algorithm. They are somewhat
balanced based on our observation. Improving either of them will get a significant performance
boost. It is not expected to achieve or beat the performance of existing libraries like FFTW,
CUFFT or Apple FFT. Because we are neither using the best algorithm so far, nor generating
optimized code on the fly to get good performance on all problems and platforms.

4.3 Source code

The source code is available on the Github repository: https://github.com/miracle2121/
hpc12-fp-r11609. It can be compiled and run on NYU HPC clusters with CPU and GPUs.
The program takes two arguments: a problem size, and the prefix of device name you would like
to run on. It uses a hard-coded array as input, in which all complex numbers are (1.0, 1.0). Then
it outputs the result and performance metrics to the standard output.

5 Results

Our experimental platform is NYU HPC Bowery cluster. One computer node consists of an Intel
Xeon X5650 six-core processor at 2.66GHz, 24GB of memory, and Nvidia Tesla M2070, which
has 448 CUDA cores and 6GB memory. We test the performance of radix-2, 4 and 8 kernels
on size N = 224 on both CPU and GPU. The measured time is the wall clock time in the host
program, and we have turned off kernel profiling to get the best running times. The Gflop/s count
is computed assuming a total number of real add+mul operations of 5Nloga(N).

Xeon X5650 | Tesla M2070
radix-2 | 3.38 Gflop/s | 25.66 Gflop/s
radix-4 | 9.42 Gflop/s | 39.15 Gflop/s
radix-8 | 11.12 Gflop/s | 47.28 Gflop/s

Table 1: Performance (in Gflop/s) of kernels on size N = 224



Apparently radix-8 kernel is the fastest since it uses more private memory and reduces the
need of global communication. However, radix-8 kernel only support those sizes N which logN is
divisible by 3. In practice we can combine different kernels to support all sizes and achieve the
best performance. Now let’s test the scalability of this algorithm using radix-8 kernel, by using

different problem sizes.

Xeon X5650 | Tesla M2070

logN =15 | 1.22 Gflop/s | 18.76 Gflop/s
18 5.21 Gflop/s | 39.19 Gflop/s

21 7.75 Gflop/s | 56.53 Gflop/s

24 11.12 Gflop/s | 47.28 Gflop/s

27 10.86 Gflop/s | 50.05 Gflop/s

Table 2: Performance (in Gflop/s) of radix-8 kernels on different sizes (logV)

As we can see, the algorithm scales very well on both CPU and GPU.
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