
	
 1	

LU Decomposition:
Parallel Algorithms for GPUs & Performance Studies

Scott Shellenhamer

December 16, 2012

Abstract

The project goal is to factor a matrix into an LU Decomposition using parallel techniques on a
graphics-processing unit (GPU). Two techniques are used for the factorization and their
performance results are compared with the corresponding sequential versions. These techniques
are: LU decomposition without pivoting using a loop unrolling technique; LU decomposition
with partial pivoting using a block algorithm.

1 Introduction

The project aims to factor dense single-precision square matrices in the size of 5,000 to
20,000 on a GPU. The GPU available memory will give an upper bound to the size of
the matrix that can be used. For small matrices, CPU techniques that utilize the cache
close to the processor may actually be more efficient. This is due to the overhead
incurred from data transfer to the GPU and the smaller number of calculations that are
actually performed.

The LU factorization problem requires approximately 2n3 / 3 floating point operations.
Therefore, the best metric to analyze relative performance is in terms of GFlops/s
achieved for each of the algorithms. I will also address memory bandwidth on the GPU,
which is measured in terms of GB/s.

I used an iterative technique to work first with algorithms without pivoting and then
unblocked algorithms with partial pivoting and finally blocked algorithms with partial
pivoting. Each parallel algorithm is compared with the performance of its corresponding
sequential version.

In researching algorithms, I found the University of Texas FLAME group to have the
most applicable blocked algorithms for partial pivoting [1, 2]. For LU without pivoting, I
referenced the Gamma Group at University of North Carolina and students at Osaka
University [3, 4]. I used psuedocode from these papers to help me in implementation. I
also made use of the Python Numpy module and the Python Scipy module that contains
linear algebra routines built on top of the ATLAS/LAPACK Fortran routines. I used the
lu function from the linalg module extensively throughout the blocked partial pivoting
algorithm. The numpy “where” function was used to convert a matrix permutation into a
vector.

	
 2	

2 LU Decomposition without Pivoting

2.1 Sequential approaches

A basic form of LU Decomposition without row pivoting can be run on certain well-
behaved matrices.

A = LU

This technique cannot be run on all matrices; however, it does significantly simplify the
algorithm when appropriate. A number of algorithms have been developed for this
method. In this project, I have implemented three such algorithms in order to determine
which would adapt best to parallelism on a GPU. Detailed performance results for each
of the sequential algorithms are presented in Section 4. The Doolittle and Crout
algorithms each had the best results and achieved a max GFlops/s of 1.7. The main
difference in the algorithms is from the for loop ordering and the dependencies between
the steps. Although the right-looking (eager) algorithm was the worst performing
sequentially, it does give the best opportunities for parallelism and use of cache.

2.2 Parallel Algorithm

The right-looking algorithm can be parallelized to some extent, however, not all
dependencies can be eliminated. Each pass through the loop k is dependent on the
previous pass. Also, the first inner i loop (column normalization) must occur before the
second inner i loop (trailing sub-matrix update). This leaves two opportunities for
parallelism: a) Each iteration of the column normalization can be independently
processed on the GPU; b) The nested loop in the trailing sub-matrix update can be
unrolled and processed on the GPU in a grid-like fashion. I leave the outer k loop on the
CPU because of the iteration dependencies and spawn two kernels for each of the inner
loops. The unblocked algorithm has the limitation that it will always spend k iterations
on the GPU. In addition, the matrix must be padded with zeros if the dimensions to not
fit with our group size dimensions (16x16 for sub-matrix update). The algorithm does,
however, have the advantage of being able to do all computations on the GPU. The
matrix can be transferred once to and from the GPU minimizing penalties from the
transfer overhead. My expectations were that the performance would improve
significantly from the sequential version in terms of time elapsed and GFlops/s. The

for	
 (k	
 =	
 0;	
 k	
 <	
 N;	
 k++)	

	
 for	
 (i	
 =	
 k	
 +	
 1;	
 i	
 <	
 N;	
 ++i)	

	
 	
 Aik	
 =	
 Aik	
 /	
 Akk	

	

	
 for	
 (i	
 =	
 k	
 +	
 1;	
 i	
 <	
 N;	
 ++i)	

	
 	
 for	
 (j	
 =	
 k	
 +	
 1;	
 j	
 <	
 N;	
 ++j)	

	
 	
 	
 Aij	
 -­‐=	
 Aik	
 *	
 Akj	

	

Figure	
 1.	
 	
 Right	
 Looking	
 Algorithm	

	
 3	

parallel algorithm will benefit mostly from the second inner for loop running on the GPU.
Using a grid-like structure on the GPU of 16x16, we can run more computations in
parallel. However, the global memory access pattern is not ideal because of the
unblocked approach to the algorithm. The amount of data we can reuse in local memory
is limited, and therefore I do not expect the performance gains seen in a blocked matrix-
matrix multiplication.

3 LU Decomposition with Partial Pivoting

3.1 Unblocked sequential approaches

To overcome the limitations of matrix decomposition without pivoting, a partial pivoting
technique is employed.

PA = LU

An additional permutation matrix will reorder the rows to make a viable factorization.
Partial pivoting adds a level of complexity to the algorithm. While iterating through the k
columns, we must find the maximum element in the column and swap this row with the
kth row. For unblocked sequential algorithms, this step makes the algorithm run
significantly slower. I wrote an unblocked algorithm with partial pivoting in C. This
algorithm has roughly the same performance as the right-looking sequential algorithm
without pivoting achieving a max GFlops/s of 1.5 for a matrix size of 64x64.

3.2 Blocked sequential approaches

Like other matrix algorithms we have seen in class, the LU factorization can benefit from
running a blocked version of the algorithm. Linear algebra libraries written in C and
Fortran like LAPACK and ATLAS have implemented blocking to improve performance.
On sequential systems, the optimal blocking scheme can take advantage of cache
memory close to the processor. For baseline testing, I used the Python Scipy module
which has linear algebra routines built on top of ATLAS, LAPACK, and BLAS. The full
timings can be found in section 4. The blocked algorithm with partial pivoting
consistently outperforms any of the naïve algorithms with no pivoting, as well as the
unblocked sequential algorithms. The results are limited to matrix sizes up to 5120x5120
because of machine memory limits, but tops out around 3.3-3.4 GFlops/s.

3.3 Parallel blocked algorithms

The question is, can the blocked algorithms be improved by exploiting parallelism on the
GPU? If so, then LU decomposition could see performance gains similar to matrix
multiplication on a GPU. Using the FLAME [1,2] algorithm as a model, the blocked
algorithm in FLAME’s notation is as follows:

	
 4	

Figure 2. FLAME Eager blocked LU Factorization algorithm with partial pivoting.

The same algorithm is described below in psuedocode.

for	
 k	
 in	
 block	
 count:	

	
 Run	
 LU	
 decomp	
 on	
 block	
 column	
 Ak	

Convert	
 permutation	
 matrix	
 to	
 permutation	
 vector	

	
 Apply	
 permutations	
 to	
 all	
 rows	
 except	
 block	
 k	

	
 	

	
 #kernel	
 rowsolve	

	
 for	
 j	
 =k+1	
 in	
 block_cols:	

Trisolve	
 for	
 U	
 in	
 block	
 row	
 k	
 using	
 L	
 from	
 LU	
 above	

	

	
 #kernel	
 submatrix_update	

	
 for	
 i	
 =	
 k+1	
 in	
 block_rows:	

	
 	
 for	
 j	
 =	
 k+1	
 in	
 block_cols:	

	
 	
 	
 Aij	
 =	
 Aij	
 –	
 Lik	
 *	
 Ukj	

	

Figure	
 3.	
 	
 Pseudocode	
 for	
 block	
 LU	
 with	
 partial	
 pivoting	

	
 5	

To begin, I chose to use a hybrid algorithm between the CPU and GPU to reuse functions
available in Scipy to perform the LU Decomposition on each k block and obtain the
permutation matrix. The permutation is then converted to a permutation vector on the
CPU using the Numpy where method. This information is then passed to the GPU to
update the rest of the matrix using three separate kernels: row swap, row solve, and
submatrix update. With this approach, I believed the main bottleneck would come from
memory bandwidth. On each block iteration through the matrix, my initial approach
would transfer the whole matrix back and forth twice between the CPU and GPU. This is
extremely expensive when using large matrices. The hardest step to parallelize is the row
swapping. Because the permutation matrix implies each row swap is done independently,
the swaps cannot be done in place. A second matrix buffer must contain the permuted
matrix and then we copy this back to the original buffer to proceed. I could have
proceeded through the algorithm using the second buffer, however, this would present
tricky synchronization problems in keeping both matrices the same throughout the loops.
I expected the performance for the row solves and the sub-matrix updates to be very fast.
Because they are essentially matrix-multiplications, these kernels should have
performance in the hundreds of Gflops/s. In particular, the row solve should see the
benefit of using local workgroup memory for the single L matrix argument. In addition,
the row solve has a coalesced global memory access pattern that is optimal for
minimizing misaligned accesses. In the sub-matrix update kernel, the global memory
access pattern is less optimal. The work group must hit a U matrix, L matrix, and an A
matrix in three different portions of memory.

4 Performance Results

All sequential algorithms were run on a Macbook Pro with a 2.8GHz Intel Core i7
processor and 8 GB of 1333 MHz DDR3 RAM. All parallel algorithms were run on the
NYU Cuda cluster using the NVIDIA GPUs.

4.1 LU Decomposition without pivoting

The performance comparisons of the LU decompositions without pivoting are presented
in Graph 1 below. This experiment assumes a well-behaved matrix. The sequential
algorithms outperform the GPU algorithm for matrices less than 512x512 with a peak
performance averaging between 1 and 2 Gflops/s. The parallel algorithm on the GPU
steadily increases performance as the size of the matrix increases and then trails off
around 5120x5120. The peak performance occurs with a matrix size of 4096x4096 with
around 6 Gflops/s. The GPU algorithm has an 85x performance increase over the
Doolittle algorithm for a 4096x4096 size matrix. The sequential algorithms most likely
peak when the matrix size corresponds to available cache size.

	
 6	

Graph 1. LU Algorithms without pivoting performance

Chart 1. LU no pivoting GPU Algorithm breakdown

0	

1	

2	

3	

4	

5	

6	

7	

GJ
lo
ps
/s
	

Matrix	
 Size	

LU	
 Algorithms	
 w/o	
 pivoting	
 (gJlops/s)	

Doolittle	

Crout	

Right-­‐Looking	

GPU	

	
 7	

The breakdown of the kernels of the GPU algorithm is presented in Chart 1 above. The
bulk of the time spent is in the trailing sub-matrix update kernel and the column
normalization kernel time is negligible. The trailing sub-matrix kernel achieves a
reasonable number of Gflops/s, however, nowhere near a matrix-multiplication. This was
somewhat expected. Because this kernel is the bulk of the computation, any
improvements to the kernel will significantly improve the performance of the whole
algorithm. I believe there is room for improvement in the global memory access pattern.
The memory transfer, which occurs at the beginning and end of the loop, was negligible
when compared to the rest of the algorithm so this is not presented in the chart.

4.2 LU Decomposition with partial pivoting

The performance comparisons of the LU decompositions with partial pivoting are
presented in Graph 2 below. The best performance comes from the Scipy sequential
blocked algorithm using the ATLAS/LAPACK libraries. This algorithm achieves a peak
performance around 3.4 Gflops/s. The GPU algorithm consistently achieves a
performance just under 1.0 Gflops/s for larger matrices; however, these numbers are
disappointing compared to the Scipy algorithm. When the timings are broken down into
the various components of the algorithm we can see why.

Looking at Graph 3, the major parts of the algorithm are broken down as a percentage of
time taken of the total. The Scipy LU function stays at a constant 10-20% for the bulk of
the timings. The GPU calculation time is higher for smaller matrices (40%) than for
larger matrices (<20%). The transfer time actually becomes smaller and smaller as the
matrices get larger. The major problem, however, is that the time taken for the Numpy
permutation matrix conversion is way to large to get the overall numbers where they
should be. I anticipated that row swapping would be an issue, but did not anticipate
actual permutation matrix to vector conversion would be as big of an issue. I did not
emphasize this in my implementation. This CPU based algorithm (numpy.where
function) should be replaced with a GPU based kernel. The other alternative would be
to use the permutation matrix as is and perform a matrix-matrix multiplication on the
GPU to transform the column blocks into the proper alignment. I believe either approach
would have improved performance.

	
 8	

Graph 2. LU Algorithms with partial pivoting performance

Graph 3. LU GPU Algorithm time spent as a percentage of total

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

GJ
lo
ps
/s
	

Matrix	
 Size	

LU	
 Algorithms	
 partial	
 pivoting	
 (gJlops/s)	

Scipy	

C	
 Unblocked	

GPU	
 blocked	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

To
ta
l	
 T
im
e	

Matrix	
 size	

GPU	
 Algo	
 Time	
 Spent	

GPU	
 Transfer	

Numpy	
 Perm	
 Matrix	

Conversion	

Scipy	
 LU	

GPU	
 Calc	

	
 9	

In my initial implementation, I found that memory bandwidth was the main bottleneck. I
was transferring the matrix back and forth between CPU and GPU too many times
throughout the loop. In the end, I decided to reduce this to one transfer of the matrix
buffer at the beginning of the code and one back to the CPU at the end of each loop
iteration. To reduce the number of transfers, I implemented a trivial “copy” GPU kernel,
to copy the results from the Scipy CPU LU function into matrix buffer on the GPU. I
found it better to call a kernel that did not do any computations then to transfer the whole
matrix again. I could not, however, remove the transfer back to the CPU at the end of
each iteration. If this “pull” transfer was removed, the algorithm could perform even
better. In a future implementation, if I still used a CPU/GPU hybrid approach, I would
fix this as well by updating a smaller buffer with only the results needed for the next
iteration.

GPU Partial Pivoting Algorithm Memory Transfer
Matrix GPU Push Push gb/s GPU Pull Pull gb/s

32 0.000618 0.021731 0.000436 0.018786
64 0.000828 0.057229 0.000793 0.08262

128 0.001317 0.134121 0.001853 0.282942
256 0.002372 0.287137 0.005974 0.702115
512 0.005373 0.497398 0.029906 1.122013

1024 0.016633 0.636565 0.199878 1.342993
2048 0.054823 0.768803 1.403017 1.530619
3072 0.107381 0.881708 3.572831 2.028575
4096 0.179167 0.938687 8.304903 2.068642
5120 0.267669 0.981273 16.043493 2.091467

10240 1.069124 0.981739 126.570129 2.120844
Chart 2. GPU partial pivoting algo memory transfer

The performance numbers for the GPU Kernels are presented below in terms of Gflops/s.
As anticipated, the Row Solve kernel had outstanding performance that increased with
matrix size. However, the performance beat my expectations. This kernel overall had a
very negligible affect on the over all time of the algorithm. The Submatrix Update kernel,
which performs the bulk of the computations, peaked at 10.6 Gflops/s. I believe this was
because of the global memory access pattern from the kernel. Because the kernel was
using data from three different regions of memory in the matrix, I was not able to come
up with the optimal strategy for global memory access.

	
 10	

Graph 4. GPU Calculation Kernel Performance for partial pivoting algorithm

Finally, the results are displayed below for the two GPU copy kernels. As anticipated,
the row swap kernel was somewhat of a bottleneck for larger matrices. The row swap
has basically a fixed cost that can only be optimized to a certain extent. I would have
expected the bandwidth numbers to be higher than they were. The small GPU copy
kernel copied data from the CPU LU decomposition into the buffered matrix on the GPU.
This kernel obtained much better performance in terms of GB/s.

Graph 5. GPU Copy Kernel Performance for partial pivoting algorithm

0.2	
 0.5	
 1.8	
 6.7	
 24	
 82	

278	

555	

879	

1261	

3403	

0.3	
 0.8	

2.1	

5.1	

7.3	

9.4	

10.6	

9.6	
 9.4	

8.4	

6.4	

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

0.0	

500.0	

1000.0	

1500.0	

2000.0	

2500.0	

3000.0	

3500.0	

4000.0	

GJ
lo
ps
/s
	
 S
ub
m
at
ri
x	

GJ
lo
ps
/s
	
 R
ow

	
 S
ol
ve
	

Matrix	
 Size	

GPU	
 Calc	
 Kernel	
 Performance	

Row	
 Solve	

Submatrix	

Update	

0.000	

5.000	

10.000	

15.000	

20.000	

25.000	

30.000	

35.000	

40.000	

GB
/s
	

Matrix	
 Size	

GPU	
 Copy	
 Kernel	
 Performance	

GPU	
 Copy	

Row	
 Swap	

	
 11	

4.3 Comparison with existing work

For partial pivoting algorithms, the FLAME group was able to achieve performance
approaching 60 GFlops/s for matrices of size 10,000 using 16 processors in a
multithreaded approach in [2]. The group in [5], also associated with FLAME, achieved
peak performance of 47 GFlops/s on a GPU.

For algorithms without pivoting, the Gamma group achieved peak performance of ~4
GFlops/s in [3]. In comparing with these groups, I was able to achieve slightly better
performance for the algorithm without pivoting and worse performance for the algorithm
with partial pivoting.

5 Code Availability

My code is available in my final project git repository <hpc12-fp-ss7064>. Instructions
are listed below for building/running the code for the various sections.

Sequential LU Decomposition without Pivoting:

• Compile the lu_c.c file using the provided Makefile. This depends on the
timing.h file (located in the project folder). The build will output a binary named
luc. From here you can run the Gauss Elimination (1), Doolittle (2), Crout (3),
and Right-Looking Algorithms (4).

• The arguments for the binary are <matrix size> <number of trips> <algorithm
(1,2,3,4 above)> and [output 0=1]. The default is 0 to not output the matrix.

• The algorithm will only work for well-behaved matrices. The output can be
verified against Scipy’s lu function.

Parallel LU Decomposition without Pivoting for GPU:

• Compile the lu_gpu.c file using the provided Makefile. This depends on the
timing.h file, lu_functions.h file, and cl_helper.h/c files (located in the project
folder). It also uses the kernel files lu_normcol.cl and lu_submatrix.cl. The build
will output a binary named lugpu.

• The arguments for the binary are <matrix size> <number of trips> and [output
0=1]. The default is 0 to not output the matrix.

• The algorithm will only work for well-behaved matrices. The output can be
verified against Scipy’s lu function.

Sequential LU Decomposition with Partial Pivoting – Unblocked:

• Using the luc binary produced from the first lu_c.c file, run the binary with an
algorithm number 10.

• The arguments for the binary are <matrix size> <number of trips> and [output
0=1]. The default is 0 to not output the matrix.

	
 12	

• The output can be verified against Scipy’s lu function.

Sequential LU Decomposition with Partial Pivoting – Blocked using Scipy:

• Run the lu.py python file on a machine with Numpy and Scipy installed.
• The arguments for the program are <matrix size> <number of trips>.

Parallel LU Decomposition with Partial Pivoting for GPU in Python:

• Run the lu_gpu.py python file on a machine with the latest version of PyOpenCl
(for ImmediateAllocator), Numpy, and Scipy installed.

• The arguments for the program are <matrix size> <block size> [validate=0]
[output=0].

• When setting the validate flag to 1, the program will compare the results to the
Scipy lu function using Numpy’s “allclose” array method.

• The output flag will print the original and factored matrices with A overwritten.
The function I created in the code will also return a dictionary of permutation
vectors.

• The program should be run with matrix sizes divisible by your block size. The
optimal block size was 16 in my testing.

6 Conclusions

LU Decomposition with partial pivoting is a difficult problem to solve on a GPU.
Dependencies throughout the algorithm and permutations prove hard to parallelize. I
believe the algorithm I have come up with is a good start towards high performing future
algorithms. Future changes would include implementing the entire algorithm on the GPU
and removing dependencies on Scipy. There are even potential areas to utilize the CPU
and GPU to do calculations at the same time on blocks without dependencies. From my
experience, for smaller matrices, block algorithms on the CPU prove to be the most
efficient. For larger matrices, the intial results for GPU algorithms looks promising.
With a few improvements, this could prove to be a solid approach.

	
 13	

References

[1] Gunnels, J., Gustavson, F., Henry, G., and Van de Geijn, R. 2001. FLAME: Formal
Linear Algebra Methods Environment. ACM Transactions on Mathematical Software,
Vol. 27, No. 4, December 2001. p422-455.

[2] Quintana-Orti, G., Quintana-Orti, E., Chan, E., Van de Geijn, R., Van Zee, F. 2007.
Design and Scheduling of an Algorithm-by-Blocks for the LU Factorization on
Multithreaded Architechtures. FLAME Working Note #26. September 19, 2007.

[3] Galoppo, N., Govindaraju, N., Henson, M., Manocha, D. 2005. .LU-GPU: Efficient
Algorithms for Solving Dense Linear Systems on Graphics Hardware., GAMMA
research group, University of North Carolina, Chapel Hill. Proceedings of the
ACM/IEEE SC/05 Conference. November 12-18, 2005.

[4] Ino, F., Matsui, M., Goda, K., Hagihara, K. 2005. Performance Study of LU
Decomposition on the Programmable GPU. Graduate School of Information Science and
Technology, Osaka University.

[5] Barrachina, S., Castillo, M., Igual, F., Mayo, R., Quintana-Orti, E. 2008. Solving
Dense Linear Systems on Graphics Processors. Euro-Par 2008, LNCS 5168 pp 739-748,
2008.

