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Abstract 
 

The project goal is to factor a matrix into an LU Decomposition using parallel techniques on a 
graphics-processing unit (GPU).  Two techniques are used for the factorization and their 
performance results are compared with the corresponding sequential versions.  These techniques 
are:  LU decomposition without pivoting using a loop unrolling technique; LU decomposition 
with partial pivoting using a block algorithm.   
 
 
1 Introduction 
 
The project aims to factor dense single-precision square matrices in the size of 5,000 to 
20,000 on a GPU.  The GPU available memory will give an upper bound to the size of 
the matrix that can be used.  For small matrices, CPU techniques that utilize the cache 
close to the processor may actually be more efficient.  This is due to the overhead 
incurred from data transfer to the GPU and the smaller number of calculations that are 
actually performed.   
 
The LU factorization problem requires approximately 2n3 / 3 floating point operations.  
Therefore, the best metric to analyze relative performance is in terms of GFlops/s 
achieved for each of the algorithms.  I will also address memory bandwidth on the GPU, 
which is measured in terms of GB/s.   
 
I used an iterative technique to work first with algorithms without pivoting and then 
unblocked algorithms with partial pivoting and finally blocked algorithms with partial 
pivoting.  Each parallel algorithm is compared with the performance of its corresponding 
sequential version.   
 
In researching algorithms, I found the University of Texas FLAME group to have the 
most applicable blocked algorithms for partial pivoting [1, 2].  For LU without pivoting, I 
referenced the Gamma Group at University of North Carolina and students at Osaka 
University [3, 4].  I used psuedocode from these papers to help me in implementation.   I 
also made use of the Python Numpy module and the Python Scipy module that contains 
linear algebra routines built on top of the ATLAS/LAPACK Fortran routines.  I used the 
lu function from the linalg module extensively throughout the blocked partial pivoting 
algorithm.  The numpy “where” function was used to convert a matrix permutation into a 
vector. 
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2   LU Decomposition without Pivoting 
 
2.1   Sequential approaches 
 
A basic form of LU Decomposition without row pivoting can be run on certain well-
behaved matrices. 

A = LU 
 
This technique cannot be run on all matrices; however, it does significantly simplify the 
algorithm when appropriate.  A number of algorithms have been developed for this 
method.  In this project, I have implemented three such algorithms in order to determine 
which would adapt best to parallelism on a GPU.  Detailed performance results for each 
of the sequential algorithms are presented in Section 4.  The Doolittle and Crout 
algorithms each had the best results and achieved a max GFlops/s of 1.7.  The main 
difference in the algorithms is from the for loop ordering and the dependencies between 
the steps.  Although the right-looking (eager) algorithm was the worst performing 
sequentially, it does give the best opportunities for parallelism and use of cache. 
 
 
 
  
 
 
 
 
 
 
 
 
 
2.2   Parallel Algorithm 
 
The right-looking algorithm can be parallelized to some extent, however, not all 
dependencies can be eliminated.  Each pass through the loop k is dependent on the 
previous pass.  Also, the first inner i loop (column normalization) must occur before the 
second inner i loop (trailing sub-matrix update).  This leaves two opportunities for 
parallelism: a) Each iteration of the column normalization can be independently 
processed on the GPU; b) The nested loop in the trailing sub-matrix update can be 
unrolled and processed on the GPU in a grid-like fashion.  I leave the outer k loop on the 
CPU because of the iteration dependencies and spawn two kernels for each of the inner 
loops.   The unblocked algorithm has the limitation that it will always spend k iterations 
on the GPU.  In addition, the matrix must be padded with zeros if the dimensions to not 
fit with our group size dimensions (16x16 for sub-matrix update).  The algorithm does, 
however, have the advantage of being able to do all computations on the GPU.  The 
matrix can be transferred once to and from the GPU minimizing penalties from the 
transfer overhead.  My expectations were that the performance would improve 
significantly from the sequential version in terms of time elapsed and GFlops/s.  The 
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parallel algorithm will benefit mostly from the second inner for loop running on the GPU.  
Using a grid-like structure on the GPU of 16x16, we can run more computations in 
parallel.  However, the global memory access pattern is not ideal because of the 
unblocked approach to the algorithm.  The amount of data we can reuse in local memory 
is limited, and therefore I do not expect the performance gains seen in a blocked matrix-
matrix multiplication. 
 
 
3   LU Decomposition with Partial Pivoting 
 
3.1   Unblocked sequential approaches 
 
To overcome the limitations of matrix decomposition without pivoting, a partial pivoting 
technique is employed.   
 

PA = LU 
 
An additional permutation matrix will reorder the rows to make a viable factorization.  
Partial pivoting adds a level of complexity to the algorithm.  While iterating through the k 
columns, we must find the maximum element in the column and swap this row with the 
kth row.  For unblocked sequential algorithms, this step makes the algorithm run 
significantly slower.  I wrote an unblocked algorithm with partial pivoting in C.  This 
algorithm has roughly the same performance as the right-looking sequential algorithm 
without pivoting achieving a max GFlops/s of 1.5 for a matrix size of 64x64. 
 
3.2   Blocked sequential approaches 
 
Like other matrix algorithms we have seen in class, the LU factorization can benefit from 
running a blocked version of the algorithm.  Linear algebra libraries written in C and 
Fortran like LAPACK and ATLAS have implemented blocking to improve performance.  
On sequential systems, the optimal blocking scheme can take advantage of cache 
memory close to the processor.  For baseline testing, I used the Python Scipy module 
which has linear algebra routines built on top of ATLAS, LAPACK, and BLAS.  The full 
timings can be found in section 4.  The blocked algorithm with partial pivoting 
consistently outperforms any of the naïve algorithms with no pivoting, as well as the 
unblocked sequential algorithms.  The results are limited to matrix sizes up to 5120x5120 
because of machine memory limits, but tops out around 3.3-3.4 GFlops/s. 
 
3.3   Parallel blocked algorithms 
 
The question is, can the blocked algorithms be improved by exploiting parallelism on the 
GPU?  If so, then LU decomposition could see performance gains similar to matrix 
multiplication on a GPU.  Using the FLAME [1,2] algorithm as a model, the blocked 
algorithm in FLAME’s notation is as follows: 
 



	
   4	
  

 
Figure 2.  FLAME Eager blocked LU Factorization algorithm with partial pivoting. 
 
 
The same algorithm is described below in psuedocode.  
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To begin, I chose to use a hybrid algorithm between the CPU and GPU to reuse functions 
available in Scipy to perform the LU Decomposition on each k block and obtain the 
permutation matrix.  The permutation is then converted to a permutation vector on the 
CPU using the Numpy where method.  This information is then passed to the GPU to 
update the rest of the matrix using three separate kernels: row swap, row solve, and 
submatrix update.  With this approach, I believed the main bottleneck would come from 
memory bandwidth.  On each block iteration through the matrix, my initial approach 
would transfer the whole matrix back and forth twice between the CPU and GPU.  This is 
extremely expensive when using large matrices.  The hardest step to parallelize is the row 
swapping.  Because the permutation matrix implies each row swap is done independently, 
the swaps cannot be done in place.  A second matrix buffer must contain the permuted 
matrix and then we copy this back to the original buffer to proceed.  I could have 
proceeded through the algorithm using the second buffer, however, this would present 
tricky synchronization problems in keeping both matrices the same throughout the loops.  
I expected the performance for the row solves and the sub-matrix updates to be very fast.  
Because they are essentially matrix-multiplications, these kernels should have 
performance in the hundreds of Gflops/s.  In particular, the row solve should see the 
benefit of using local workgroup memory for the single L matrix argument.  In addition, 
the row solve has a coalesced global memory access pattern that is optimal for 
minimizing misaligned accesses.  In the sub-matrix update kernel, the global memory 
access pattern is less optimal.  The work group must hit a U matrix, L matrix, and an A 
matrix in three different portions of memory.   
 
 
4   Performance Results 
 
All sequential algorithms were run on a Macbook Pro with a 2.8GHz Intel Core i7 
processor and 8 GB of 1333 MHz DDR3 RAM.  All parallel algorithms were run on the 
NYU Cuda cluster using the NVIDIA GPUs. 
 
4.1  LU Decomposition without pivoting 
 
The performance comparisons of the LU decompositions without pivoting are presented 
in Graph 1 below.  This experiment assumes a well-behaved matrix.  The sequential 
algorithms outperform the GPU algorithm for matrices less than 512x512 with a peak 
performance averaging between 1 and 2 Gflops/s.  The parallel algorithm on the GPU 
steadily increases performance as the size of the matrix increases and then trails off 
around 5120x5120.  The peak performance occurs with a matrix size of 4096x4096 with 
around 6 Gflops/s.   The GPU algorithm has an 85x performance increase over the 
Doolittle algorithm for a 4096x4096 size matrix.   The sequential algorithms most likely 
peak when the matrix size corresponds to available cache size. 
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Graph 1.  LU Algorithms without pivoting performance 
 
 
 
 
 

 
Chart 1.  LU no pivoting GPU Algorithm breakdown 
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The breakdown of the kernels of the GPU algorithm is presented in Chart 1 above.  The 
bulk of the time spent is in the trailing sub-matrix update kernel and the column 
normalization kernel time is negligible.  The trailing sub-matrix kernel achieves a 
reasonable number of Gflops/s, however, nowhere near a matrix-multiplication.  This was 
somewhat expected.  Because this kernel is the bulk of the computation, any 
improvements to the kernel will significantly improve the performance of the whole 
algorithm.  I believe there is room for improvement in the global memory access pattern.   
The memory transfer, which occurs at the beginning and end of the loop, was negligible 
when compared to the rest of the algorithm so this is not presented in the chart. 
 
 
4.2  LU Decomposition with partial pivoting 
 
The performance comparisons of the LU decompositions with partial pivoting are 
presented in Graph 2 below.   The best performance comes from the Scipy sequential 
blocked algorithm using the ATLAS/LAPACK libraries.  This algorithm achieves a peak 
performance around 3.4 Gflops/s.  The GPU algorithm consistently achieves a 
performance just under 1.0 Gflops/s for larger matrices; however, these numbers are 
disappointing compared to the Scipy algorithm.  When the timings are broken down into 
the various components of the algorithm we can see why. 
 
Looking at Graph 3, the major parts of the algorithm are broken down as a percentage of 
time taken of the total.  The Scipy LU function stays at a constant 10-20% for the bulk of 
the timings.  The GPU calculation time is higher for smaller matrices (40%) than for 
larger matrices (<20%).  The transfer time actually becomes smaller and smaller as the 
matrices get larger.  The major problem, however, is that the time taken for the Numpy 
permutation matrix conversion is way to large to get the overall numbers where they 
should be.   I anticipated that row swapping would be an issue, but did not anticipate 
actual permutation matrix to vector conversion would be as big of an issue.  I did not 
emphasize this in my implementation.  This CPU based algorithm (numpy.where 
function) should be replaced with a GPU based kernel.    The other alternative would be 
to use the permutation matrix as is and perform a matrix-matrix multiplication on the 
GPU to transform the column blocks into the proper alignment.  I believe either approach 
would have improved performance. 
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Graph 2.  LU Algorithms with partial pivoting performance 
 

 
 
Graph 3.  LU GPU Algorithm time spent as a percentage of total 
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In my initial implementation, I found that memory bandwidth was the main bottleneck.  I 
was transferring the matrix back and forth between CPU and GPU too many times 
throughout the loop.  In the end, I decided to reduce this to one transfer of the matrix 
buffer at the beginning of the code and one back to the CPU at the end of each loop 
iteration.  To reduce the number of transfers, I implemented a trivial “copy” GPU kernel, 
to copy the results from the Scipy CPU LU function into matrix buffer on the GPU.  I 
found it better to call a kernel that did not do any computations then to transfer the whole 
matrix again.  I could not, however, remove the transfer back to the CPU at the end of 
each iteration.  If this “pull” transfer was removed, the algorithm could perform even 
better.  In a future implementation, if I still used a CPU/GPU hybrid approach, I would 
fix this as well by updating a smaller buffer with only the results needed for the next 
iteration.   
 

GPU Partial Pivoting Algorithm Memory Transfer   
Matrix GPU Push Push gb/s GPU Pull Pull gb/s 

32 0.000618 0.021731 0.000436 0.018786 
64 0.000828 0.057229 0.000793 0.08262 

128 0.001317 0.134121 0.001853 0.282942 
256 0.002372 0.287137 0.005974 0.702115 
512 0.005373 0.497398 0.029906 1.122013 

1024 0.016633 0.636565 0.199878 1.342993 
2048 0.054823 0.768803 1.403017 1.530619 
3072 0.107381 0.881708 3.572831 2.028575 
4096 0.179167 0.938687 8.304903 2.068642 
5120 0.267669 0.981273 16.043493 2.091467 

10240 1.069124 0.981739 126.570129 2.120844 
Chart 2.  GPU partial pivoting algo memory transfer 

 
The performance numbers for the GPU Kernels are presented below in terms of Gflops/s.  
As anticipated, the Row Solve kernel had outstanding performance that increased with 
matrix size.  However, the performance beat my expectations.  This kernel overall had a 
very negligible affect on the over all time of the algorithm. The Submatrix Update kernel, 
which performs the bulk of the computations, peaked at 10.6 Gflops/s.  I believe this was 
because of the global memory access pattern from the kernel.  Because the kernel was 
using data from three different regions of memory in the matrix, I was not able to come 
up with the optimal strategy for global memory access.   
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Graph 4.  GPU Calculation Kernel Performance for partial pivoting algorithm 
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Graph 5.  GPU Copy Kernel Performance for partial pivoting algorithm 
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4.3  Comparison with existing work 
 
For partial pivoting algorithms, the FLAME group was able to achieve performance 
approaching 60 GFlops/s for matrices of size 10,000 using 16 processors in a 
multithreaded approach in [2].  The group in [5], also associated with FLAME, achieved 
peak performance of 47 GFlops/s on a GPU.    
 
For algorithms without pivoting, the Gamma group achieved peak performance of ~4 
GFlops/s in [3].  In comparing with these groups, I was able to achieve slightly better 
performance for the algorithm without pivoting and worse performance for the algorithm 
with partial pivoting. 
 
 
5   Code Availability 
 
My code is available in my final project git repository <hpc12-fp-ss7064>.  Instructions 
are listed below for building/running the code for the various sections. 
 
Sequential LU Decomposition without Pivoting: 
 

• Compile the lu_c.c file using the provided Makefile.  This depends on the 
timing.h file (located in the project folder).  The build will output a binary named 
luc.  From here you can run the Gauss Elimination (1), Doolittle (2), Crout (3), 
and Right-Looking Algorithms (4). 

• The arguments for the binary are <matrix size> <number of trips> <algorithm 
(1,2,3,4 above)> and [output 0=1].  The default is 0 to not output the matrix. 

• The algorithm will only work for well-behaved matrices.  The output can be 
verified against Scipy’s lu function. 

 
Parallel LU Decomposition without Pivoting for GPU: 
 

• Compile the lu_gpu.c file using the provided Makefile.  This depends on the 
timing.h file, lu_functions.h file, and cl_helper.h/c files (located in the project 
folder).  It also uses the kernel files lu_normcol.cl and lu_submatrix.cl. The build 
will output a binary named lugpu.  

• The arguments for the binary are <matrix size> <number of trips> and [output 
0=1].  The default is 0 to not output the matrix. 

• The algorithm will only work for well-behaved matrices.  The output can be 
verified against Scipy’s lu function. 

 
Sequential LU Decomposition with Partial Pivoting – Unblocked: 
 

• Using the luc binary produced from the first lu_c.c file, run the binary with an 
algorithm number 10. 

• The arguments for the binary are <matrix size> <number of trips> and [output 
0=1].  The default is 0 to not output the matrix. 
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• The output can be verified against Scipy’s lu function. 
 
Sequential LU Decomposition with Partial Pivoting – Blocked using Scipy: 
 

• Run the lu.py python file on a machine with Numpy and Scipy installed. 
• The arguments for the program are <matrix size> <number of trips>. 

 
Parallel LU Decomposition with Partial Pivoting for GPU in Python: 
 

• Run the lu_gpu.py python file on a machine with the latest version of PyOpenCl 
(for ImmediateAllocator), Numpy, and Scipy installed. 

• The arguments for the program are <matrix size> <block size> [validate=0] 
[output=0]. 

• When setting the validate flag to 1, the program will compare the results to the 
Scipy lu function using Numpy’s “allclose” array method.  

• The output flag will print the original and factored matrices with A overwritten.  
The function I created in the code will also return a dictionary of permutation 
vectors. 

• The program should be run with matrix sizes divisible by your block size.  The 
optimal block size was 16 in my testing. 

 
 
6   Conclusions 
 
LU Decomposition with partial pivoting is a difficult problem to solve on a GPU.  
Dependencies throughout the algorithm and permutations prove hard to parallelize.  I 
believe the algorithm I have come up with is a good start towards high performing future 
algorithms.  Future changes would include implementing the entire algorithm on the GPU 
and removing dependencies on Scipy.  There are even potential areas to utilize the CPU 
and GPU to do calculations at the same time on blocks without dependencies.  From my 
experience, for smaller matrices, block algorithms on the CPU prove to be the most 
efficient.  For larger matrices, the intial results for GPU algorithms looks promising.  
With a few improvements, this could prove to be a solid approach. 
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