LU Decomposition on a GPU

Presented by Scott Shellenhamer

Project Overview & Goal

The Project Goal is to factor a matrix into a LU Decomposition using parallel techniques on a graphicsprocessing unit (GPU) at an optimal speed.

Two techniques are used for the factorization and their performance results are compared with the corresponding sequential versions.

- LU decomposition without pivoting using a loop unrolling technique.
- LU decomposition with partial pivoting using a block algorithm.

What are the Benefits of LU Decomposition on a GPU?

It's useful for many applications, such as solving Linear Equations.....and most importantly it needs to be fast!

Project Approach

•Sequential •Parallel Algorithms with Partial Pivoting

•Sequential •Unblocked vs. Blocked •Parallel Optimize Parallel Approaches

•Hybrid CPU/ GPU

Results with Partial Pivoting

Summary of Challenges & Learnings

1. Review performance of individual components

2. Memory transfer from host to device

3. Working with external libraries

4. When in doubt...write/run the code

Review Individual Component Performance

GPU Algo Time Spent

Memory Transfer from host to device

- Try to minimize transfer
- Sometimes better to do trivial work on GPU than to transfer back and forth
- CPU/GPU hybrid algorithm –difficult to reduce transfers

Working with External Libraries

• Can be excellent tools for quick development

• But...don't take performance for granted!

 Analyze performance of external libraries as well as your own code

When in Doubt...Write/Run the Code

• GPUs kernels can be difficult to visualize

• Example: Memory access

• Write different access types and measure the performance gains

