
LU Decomposition on a
GPU

Presented by Scott Shellenhamer

AGENDA

Project Overview & Goal

Results

Challenges & Learnings

Project Overview & Goal

The Project Goal is to factor a matrix into a LU
Decomposition using parallel techniques on a graphics-
processing unit (GPU) at an optimal speed.

Two techniques are used for the factorization and their

performance results are compared with the
corresponding sequential versions.

•  LU decomposition without pivoting using a loop

unrolling technique.
•  LU decomposition with partial pivoting using a

block algorithm.

It’s useful for many applications, such as
solving Linear Equations…..and most

importantly it needs to be fast!

What are the Benefits of LU
Decomposition on a GPU?

Project Approach

Algorithms
without
Pivoting

• Sequential
• Parallel

Algorithms
with

Partial
Pivoting

• Sequential

• Unblocked vs.
Blocked
• Parallel

Optimize
Parallel

Approaches

• Hybrid CPU/
GPU

AGENDA

Project Overview & Goal

Results

Challenges & Learnings

Results without Pivoting

0

1

2

3

4

5

6

7

G
fl

op
s/

s

Matrix Size

LU Algorithms w/o pivoting (gflops/s)

Doolittle

Crout

Right-Looking

GPU

Results with Partial Pivoting

0

0.5

1

1.5

2

2.5

3

3.5

4

G
fl

op
s/

s

Matrix Size

LU Algorithms partial pivoting (gflops/s)

Scipy

C Unblocked

GPU blocked

AGENDA

Project Overview & Goal

Results

Challenges & Learnings

Summary of Challenges & Learnings

1. Review performance of individual
components

2. Memory transfer from host to
device

3. Working with external libraries

4. When in doubt…write/run the code

Review Individual Component Performance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32 64 128 256 512 1024 2048 3072 4098 5120 10240

To
ta

l T
im

e

Matrix size

GPU Algo Time Spent

GPU Transfer

Numpy Permutation

Scipy LU

GPU Calc

Memory Transfer from host to device

•  Try to minimize transfer

•  Sometimes better to do trivial work on GPU
than to transfer back and forth

•  CPU/GPU hybrid algorithm –difficult to reduce
transfers

Working with External Libraries

•  Can be excellent tools for quick development

•  But...don’t take performance for granted!

•  Analyze performance of external libraries as

well as your own code

When in Doubt…Write/Run the Code

•  GPUs kernels can be difficult to visualize

•  Example: Memory access

•  Write different access types and measure the

performance gains

QUESTIONS?

