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Project Overview & Goal 

The Project Goal is to factor a matrix into a LU 
Decomposition using parallel techniques on a graphics-
processing unit (GPU) at an optimal speed.   

 
Two techniques are used for the factorization and their 

performance results are compared with the 
corresponding sequential versions.  

 
•  LU decomposition without pivoting using a loop 

unrolling technique. 
•  LU decomposition with partial pivoting using a 

block algorithm.   



It’s useful for many applications, such as 
solving Linear Equations…..and most 

importantly it needs to be fast! 

What are the Benefits of LU 
Decomposition on a GPU? 



Project Approach 

Algorithms 
without 
Pivoting 

 
• Sequential 
• Parallel 

Algorithms 
with 

Partial 
Pivoting 

 
• Sequential 

• Unblocked vs. 
Blocked 
• Parallel 

Optimize 
Parallel 

Approaches 
 

• Hybrid CPU/
GPU 
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Results without Pivoting 
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Results with Partial Pivoting 
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Summary of Challenges & Learnings 

1. Review performance of individual 
components 

2. Memory transfer from host to 
device 

3. Working with external libraries 

4. When in doubt…write/run the code 



Review Individual Component Performance 
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Memory Transfer from host to device 

•  Try to minimize transfer 

•  Sometimes better to do trivial work on GPU 
than to transfer back and forth 

•  CPU/GPU hybrid algorithm –difficult to reduce 
transfers 



Working with External Libraries 

•  Can be excellent tools for quick development 

 
•  But...don’t take performance for granted! 
 
 
•  Analyze performance of external libraries as 

well as your own code 



When in Doubt…Write/Run the Code 

•  GPUs kernels can be difficult to visualize 

 
•  Example: Memory access 
 
 
•  Write different access types and measure the 

performance gains 



QUESTIONS? 


