
High Performance Computing Project Report:

Implementation of Fast Biclustering Algorithm

Simeng Kuang

December 20, 2012

Abstract

In this report, we mainly described a biclustering algorithm and its
parallel implementation. This algorithm, which efficiently detects low rank
submatrix within a much larger matrix, is discussed both from the theo-
retical intuition aspect and its implementation details. Various numerical
results were presented to demonstrate the efficiency of our implementa-
tion.

1 Introduction

Aiming at detecting low rank submatrix within a much larger matrix, bicluster-
ing algorithm is highly related to various techniques in data analysis[1, 2, 3, 4] .
In the paper of Rangan[5], a fast biclustering algorithm that relies on a basic
geometric property of high-dimensional space were presented. According to a
scoring system which based on counting the number of rank-1 2×2 submatrices,
the algorithm removes rows and columns that are unlikely to be in the low rank
submatrix thus find the low rank one.
There are also other attempts to finding certain kinds of low-rank submatrices,
such as nuclear norm minimization [6], adaptive dissection of projective space[7]
and spectral biclustering[8].
In this report, In the first part, we constructed the algorithm from its geomet-
rical intuition in an equivalent but slightly different way as in Rangan’s paper.
We gave a new form of the row and column scores that is more straightforward
and easier to implement, 4 update formulas that are used in implementation
were also introduced. In the second part, we focused on important implemen-
tation details such as problem scale we can work on and ways to accelerate the
code. Finally, we closely studied the efficiency of our implementation by pre-
senting various numerical experiment results on different problem scales with
both single thread and multi threads.

2 Theoretical Background

Generally speaking, there is one basic problem we will consider. This prob-
lem involves finding the largest submatrix of low numerical-rank from a larger
matrix. This problem (stated formally below) is often called the ‘biclustering’
problem in data-analysis[1, 2, 3, 4].

1



Problem 1. Assume that we are given an n×m matrix A, and that an nC×mC

submatrix C of A has low numerical-rank k. Assuming that C is the largest such
submatrix within A, is it possible to find C quickly?

In Rangan’s paper, the following property of high dimensional space is essential
to find a way to solve our problem.

Property 1. Planar projections of eccentric gaussian distributions are concen-
trated in non-adjacent quadrants.

Intuitively, consider a gaussian distribution with a covariance matrix that is
numerically low rank(we can assume it is full rank to avoid degeneracy). Since
it’s numerically low rank, most of its singular values are a lot smaller than
the largest few ones. The consequence of this is that if we draw its density
function in Rn, it will be very ’thin’. So if we do a random planar projection, it
will project the distribution to a subspace that corresponding to small singular
values with high probability. The result is that the distribution will also be
’thin’, like a line in R2, in another word the distribution will concentrate in
non-adjacent quadrants. A more accurate description of this property can be
found in Rangan’s paper[5].
With this property, we can tell how likely a row(column) is in the low rank
submatrix.
Consider arbitrary 2× 2 submatrix of A, we can view it as a planar projection
P (i, j), where i, j are the row indexes of this submatrix in A. If the 2×2 matrix
is in the low rank submatrix, because of Property 1, its row vectors are more
likely to stay in same quadrant or opposite quadrants,but not adjacent ones. If
it is not in the low rank submatrix, the probability of staying in each quadrant
will be uniform. In another word, we actually find a bias of 2× 2 matrices:

Property 2. For arbitrary row i,j and column k,l of A,consider their inter-
section, a 2 × 2 matrix, if its 2 row vectors stay in same quadrant or opposite
quadrants, row i,j and column k,l are more likely to be in low rank submatrix.

If we binarize matrix A to a binary matrix B, meaning set bij = sgn(aij),
Property 2 is equivalent to the following property of B.

Property 3. For arbitrary row i,j and column k,l of B,consider their intersec-
tion, a 2× 2 matrix, if it is rank 1, row i,j and column k,l of A are more likely
to be in low rank submatrix.

Back to property 2, we can transform this bias of 2× 2 matrices to bias of rows
and columns.

Property 4. For a given row i of B, consider all the 2× 2 matrices that have
row i. the more rank 1 matrices we can find within these matrices, the more
likely row i is in the low rank submatrix.

Thus we actually defined a score for every rows and columns, the next lemma
tells us a straightforward form of our score.

Lemma 1. For arbitrary rows Bi and Bj of B, define a score S(i, j) to be the
number of 2 × 2 submatrices these 2 rows intersects with all possible columns.
we have:

S(i, j) =< Bi, Bj >
2 (1)

2



Lemma 2. For arbitrary row Bi of B, define a score Ri to be the number of
2× 2 submatrices this row intersects with all possible columns. we have:

Ri =

n∑
j=1

S(i, j) =

n∑
j=1

< Bi, Bj >
2 (2)

If lemma 1 is proved, lemma 2 is just add up all the rows, next we prove lemma
1.
Proof of lemma 1:
since Bi Bj are consist of 1 and−1, we consider vector v = (bi1bj1, bi2bj2, . . . , bimbjm),
if vk = 1, it means the kth entry of row i and row j are the same, otherwise
they are different. Thus 2× 2 matrix is rank 1 if and only if vk = vl. So let the
number of 1 in v to be n1, the number of −1 in v to be n2. we have:

n1 + n2 = m (3)

n1 − n2 = < Bi, Bj > (4)

S(i, j) = n2
1 + n2

2 (5)

So we have

S(i, j) =
1

2
(< Bi, Bj >

2 +m2) (6)

Since we only want to compare different rows scores, we can ignore the constants
and the expression, simply we define:

S(i, j) =< Bi, Bj >
2 (7)

Lemma 1 is proved, so lemma 2 also holds. In summary, we have the scores for
rows and columns Ri and Cj as below, we have to change our notation to make
things more clear.

Theorem 1. Let B be a n×m {1,−1} matrix that derived from A. Let Ai be
the ith row and Ri be its score. Similarly we define Bj as the jth column and
Cj as its scores.

Ri =

n∑
j=1

< Ai, Aj >
2 (8)

Si =

m∑
j=1

< Bi, Bj >
2 (9)

3 Algorithm Description

With scores defined in the last section, we can have simple procedure of detecting
low rank submatrix.

1. Binarize matrix A to B,

2. Calculate the scores of all remaining rows and columns,

3. Remove rows or columns with lowest score, go to step 2 unless all the rows
or columns were removed.

3



4. Check the rows and columns remained at last, we find the low rank sub-
matrix.

Note that when a row or column is removed, the score of all the remaining rows
and columns changes, so we have to recalculate scores after each remove. The
naive way to do this is to calculate formulas (8) (9) directly, which is a O(n3)
operation. However, we notice that only small parts in every score are changed,
we can use the following update formula to recalculate all the scores.

Theorem 2. After removing one row a = (a1, a2, · · · , am),set the original
scores to be R′i and C ′j. we find the new scores to be:

R′i = Ri− < Ai, a >2 i (10)

C ′i = Ci −m− 2
∑
Ak 6=a

< Ak, a > aiaki (11)

If we remove one column, let it be b = (b1, b2, · · · , bn)T , The new scores are

C ′i = Ci− < Bi, b >
2 (12)

R′i = Ri − n− 2
∑
Bk 6=b

biaik < Bk, b > (13)

Using these formulas instead of (8)(9) brings the complexity of recalculating
scores to O(n2).

Thus a more accurate description of our algorithm is:

1. Binarize matrix A to B,

2. Initialize the scores of all rows and columns using (8) and (9)

3. Remove rows or columns with lowest score,

4. Update all the scores using (10),(11),(12) and (13),

5. If all the rows or columns are removed, go to step 6, otherwise go to step
3,

6. Check the rows and columns remained at last, we find the low rank sub-
matrix.

Now we can head to the next implementation part.

4 Implementation

In this section, we will first relate our algorithm to its most direct application
on genetic data and give a revision of the algorithm to fit the practical needs.
Then we will discuss the problem scale we are working on and its relation to
implementation. Finally we will discuss technical details of optimizing the per-
formance of both sequential and parallel programs.

4



4.1 Genetic data and supervised implementation

Gene-expression data typically involves various gene-expression levels measured
across many patients. Typically patients are classified into ‘cases’ and ‘controls’.
Moreover, there are typically many genes which are correlated across the entire
population — including both cases and controls. In this case, the largest low-
rank submatrix within the gene-expression data will just be the features across
both cases and controls, thus helpless in finding correlation between the decease
and gene. Instead, we are interested in finding low rank submatrices that is
in the cases group and excluding the co-exist low rank structures among the
whole population at the same time. This type of submatrix would pinpoint
genes useful for diagnosis and discrimination between case and control status.
Mathematically, instead of a single matrix A, we now have two input, the n×m
cases matrix A and d × m controls matrix Z. Our objective is to find a low
rank submatrix in A that does not share the structure in Z. To achieve this, we
simply modify our scores, but still use the procedure we described in the last
section.
Intuitively, we also count the rank 1 2 × 2 matrices, but when we find a rank
1 2 × 2 in Z, we minus 1 on the score instead of add 1. As a result, equation
(8)-(13) are modified into:

Theorem 3. 1. Let A be a n×m {1,−1} matrix. Let Ai be the ith row and
Ri be its score. Similarly we define Bj as the jth column and Cj as its
scores.

Let Z be a d×m {1,−1} matrix and Zi and Kj be rows and columns.

Define < ·, · > as the product of 2 vectors.

Then we can write scores as:

Ri =
∑
j

< Aj , Ai >
2 −

∑
j

< Zj , Ai >
2 (14)

Ci =
∑
j

< Bj , Bi >
2 −

∑
j

< Bj , Bi >< Kj ,Ki > (15)

2. After removing one row a = (a1, a2, · · · , am),set the scores as R′i and C ′j.

we find the updates:

R′i = Ri− < Ai, a >2 i (16)

C ′i = Ci −m− 2
∑
Ak 6=a

< Ak, a > aiaki +
∑
Zk

< Zk, a > akzki (17)

If we remove one column, let it be b = (b1, b2, · · · , bn)T , and the corre-
sponding column in Z is k = (k1, k2, · · · , kd)T . We have the update:

C ′i = Ci− < Bi, b > [< Bi, b > − < Ki, k >] (18)

R′i = Ri − n + d− 2
∑
Bk 6=b

biaik[< Bk, b > − < Kk, k >] (19)

5



With these new scores we defined, we can use the same procedure described in
last section to analysis genetic data. Related sample results are presented in
the Numerical Result section.

4.2 Problem Scales

In this section, we will discuss what are the scales of existing genetic data and
what scale we can work on. How to compress and store data in real machine is
also discussed.
Our algorithm is essentially a sequential algorithm, the order of removing rows
and columns is irreversible. In this case, the main operation of the algorithm is
the updating all the scores. This is also what we should optimize and parallelize.
Since it is a O(n2) operation and during each update we only reading entries
O(1) times, our algorithm is essentially a memory bound problem. As a result
how to store and read memory is important issue.
Firstly, the genetic data we can work on typically of three different scales.

• Cancer data. This data set’s size if about 105 × 107, meaning there are
about 105 patients and 107 gene.

• Bipolar disorder data. This data set’s size if about 104 × 106.

• Austin spectrum disorder data. This data is 102*104.

To continue our discussion, we will first explain how we can store our data.
Since we are working on 1,−1 matrix, The cheapest way to store is 1 bit per
entry. we simply map 1 to 1, −1 to 0 so the information of 1 entry is stored
in 1 bit. The next step is to store these bits in given data type in C, in our
implementation, you can choose data types from bool, short, int, long.
There are 2 advantage of this storage strategy. Firstly, instead of storing 1 entry
in 1 given data type in C, for example Bool, it takes at least 8 bits to store 1
entry. So the size of data in computer will be 8 times larger. Secondly, with
data stored in bits, we can apply bitwise operation in C, which is very fast. For
example, if we store 2 rows in 2 int variable a and b. the product of this 2 rows
is simply the XOR operation and a Popcount1 function on int.

< Ai, Aj >= 2popcount(aˆb)− 16 (20)

Using this strategy, we can now compute the actual memory we need to store
the data we mentioned before. We have:

cancer 105 × 107 100GB
bipolar 104 × 106 1GB
ASD 102 × 104 1MB

We can see from this chart that the cancer data is to big to run. There are 2
reasons:

1. We have basically 2 ways of reading data. The first one is to read the
whole data set into RAM at the beginning of our program and read from
RAM when we want to use them. The second way is to read the data
from hard disk every time we update scores. Obviously the first way is

1The popcount function returns the number of ’1’ in a single int

6



preferred. However, when we have a 100GB data, We need a 100GB RAM
to store them, which is not practical for common users. But if we use the
second way, we have to read 100GB 107 times, just the time of transfering
data will kill our program.

2. An alternative way is to use multiple computers to parallel our program
so we can store data in different computers and read data to each one’s
RAM only once. In this situation, the communication between computers
will be a big problem because rows and columns interacts with different
ones frequently.

As a result, we will give up to run the cancer data and focus on the Bipolar
disorder data’s scale and read all the data into RAM once.

4.3 Programming Details

Since multiple computer(MPI) is not suit for our problem, we will first work on
the single thread version and then parallel it using OpenMP. Several optimize
techniques that are actually gain us speed are presented below:

1. Faster Bitwise operation Bitwise operation takes half of the time in the
program, especially the popcount function. So if we can make popcount
fast, the whole program will be faster. Here we used the ’parallel popcount’
described by Anderson[Anderson]:

static const int S[] = {1, 2, 4, 8, 16};

static const int B[] = {0x55555555 , 0x33333333 , 0

x0F0F0F0F , 0x00FF00FF , 0x0000FFFF };

static inline int Popcount(unsigned int v){

unsigned int c;

c = v - ((v >> 1) & B[0]);

c = ((c >> S[1]) & B[1]) + (c & B[1]);

c = ((c >> S[2]) + c) & B[2];

c = ((c >> S[3]) + c) & B[3];

c = ((c >> S[4]) + c) & B[4];

return c;

}

This method of popcount add bit number in parallel, takes only 12 op-
erations, which is the same as the lookup-table method, but avoids the
memory and potential cache misses of a table.

2. Optimization of Loops.
As we know, nested for loops kills speed, in our code, because of the data
storage strategy, there will be a small for loop with length 16(the length
of short) inside other loops, we unrolled it as the pseudo code showed
below:

for(i=0;i<16;i++){

Operation[i];

}

⇓

7



Operation [0];

Operation [1];

...

Operation [15];

This change gives about 30% speedup.

3. Improvement in memory access

Since we store several matrix entries in one variable, we have to access
the data several times to get the information of each entry. The technique
here is to store this variable in a temporary variable so that this temporary
one can stay in the cache, so when we read this variable, the reading is
very fast. The changes in our code is:

Operation[0, array[s]];

Operation[2, array[s]];

...

Operation [15, array[s]];

⇓
temp = array[s];

Operation[0,temp];

Operation[1,temp];

...

Operation [15,temp];

4. Parallel technique Parallel the sequential code using openMP is not straight-
forward. A main difficulty is the frequent writing access from different
cores to a same variable. More specifically, take an example of update
formula (13). For different k, the term < Bk, b > is calculated by different
core, so all the cores will try to add its < Bk, b > to a same score R′i.
An obvious choice is to synchronize this operation, but it only makes the
program much slower even you are using multiple threads. Our strategy
is create a temporary array to store the increments on scores, after we get
all the increment, we add increments on all the cores to scores. So the
scores will only be accessed x times, x is the number of threads we used.
The pseudo code is showed below:

#pragma omp parallel for

for(k=0;k<n;k++){

int s;

...;

s=...;

...;

#pragma omp critical

{

Ri+= s;

}

}

⇓

8



#pragma omp parallel

int Ri_private;

#pragma omp for

for(k=0;k<n;k++){

int s;

...;

s=...;

...;

Ri_private += s;

}

#pragma omp critical

{

Ri+= Ri_private;

}

Using this technique the multi-thread program achieves speedup of 2.9 for
4 cores and 5.6 for 12 cores.

These optimization techniques do accelerate our program to a great extant,
numerical evidences are showed in the following numerical results section.

5 Numerical Results

There are 4 parts in this section. In the first one we define the measurements
we will use in the following three parts to present the efficiency of our program.
In the second part, numerical evidences of how the optimization techniques
accelerate the program are presented. In the third part, we used the ASD
data to test and compared the performance of the multi-thread program with
different core-numbers. In the last one, we used large random matrix as input to
test the performance of the multi-thread program on large matrix. Estimation
of running time on Bipolar disorder data were also made.

5.1 Measurement of performance

A direct measurement is the running time of the program, but it is inconvenient
when we want to compare the performance of different implementation on dif-
ferent data size. Therefore we define a measurement called Time Per Unit to
compare each program’s speed. We also use Speedup with its general definition
to measure the efficiency of parallel program. Their formal definition are given
below:

Time Per Unit =
running time/s

nm(n + m)
(21)

Speedup =
Sequential time/s

parallel time/s
(22)

5.2 Effects of Optimization Techniques

In this section, we ran several versions of our program on the ASD data sets.
The data matrices has a 193 × 6449 case matrix A and a 128 × 6449 controls
matrix.

9



In figure 1, the x-axis represent program version. Version 1 is the original
program with no optimization. In version 2, we added optimization technique
1 described in last section, Version 3 corresponds to technique 1 and 2, Version
4 corresponds to technique 1,2 and 3, while the final version 5 contains all the
techniques and an additional -O3 compile flag. The left y-axis is the timing on
this data. The secondary y-axis is the Time Per Unit.

Figure 1: Sequential Program Efficiency

Figure 2: Parallel Program Efficiency

We can easily see from figure 1, the performance was enhanced after each
optimization technique was added. In total we improved TPU from 0.852e− 9
to 0.127e− 10, which means the program is 7 times faster.

In figure 2, we investigated the efficiency of parallel version versus the se-
quential program final version 5. The x-axis represent version, we used 1,4,12
cores to run the program. The left y-axis is the TPU and the right y-axis
represent speedup.

We can see that the multi-thread program achieves speedup of 2.9 for 4 cores
and 5.6 for 12 cores. With 12 cores the TPU goes down to 2.2e − 10, which is
40 times faster than version 0.

10



5.3 Performance and thread Numbers

We present results of program performance with different thread numbers on
random data matrix. Notice that in practical data, the ratio of column number
and row number is about 100, our randomly generated matrix will also has this
ratio. Particularly in this section, we chose data matrix of size 320× 12800 and
320× 51200, using 1,2,4,6,8,10 and 12 threads to run the program.

Figure 3: 640× 12800

Figure 4: 640× 51200

11



In Figure 3 and 4, x-axis represent the number of threads we used. y-
axis represent the running time. Black, green and red lines are total time,
update time and initialize time, respectively. In Figure 5, we plot the speedup
of different cores.

We can see that our parallel program do accelerate the computation to a
great extent. 12 cores give us 4 to 4.5 speedup. However, we can also see that
when the thread number is bigger then 8, the speedup does not increase dra-
matically, this is due to the synchronization and the different efficiency between
cores(The situation that some cores are waiting for other cores will occur).

Figure 5: !!!!!

5.4 Performance on large data

In this section, we investigate the performance on matrix with different size.

Figure 6: 640× 12800

12



Again we choose random matrices that is around the ratio of 100. We investigate
matrices with 2 given ratio: 20, 80. 20 is close to the ratio of ASD data, while
80 is close to the ratio of bipolar data.

In figure 6 and 7, we used the log-log axis, x-axis represents the row number,
y-axis represents the running time. In figure 8, we investigated the TPU of our
program on data with different size. The black and red line represents matrices
with ratio 20 and 80, respectively.

From figure 6 and 7, we can see that the timing indicate that our program
is indeed O(n3), because the slope is 3. From figure 8, we observed that the
TPU is decreasing when we use larger matrices, this is because when the matrix
is larger, the time of other lower order operation (such as the synchronized
operation in last section) can be neglected.

In conclusion, the program at last achieves a TPU of 1.2e−10 on large data
matrix. As a result, we can predict the time we need to run the bipolar data:

estimated time = 1.2× 10−10 × 10240× 819200× 829440

≈ 834941s = 231h = 9d

Figure 7: 640× 51200

Figure 8: TPU

13



6 Summary

In this report, we discussed the biclustering algorithm introduced by Rangan[5]
from both its theoretical intuition and implementation. For the first half, we
found new formulas for the scores that are easier to understand and implement.
For the second half, we implemented the algorithm in C and used openMP the
get a parallel version. We discussed several optimization techniques to make the
program faster, these techniques made the program 40 times faster comparing
to the first version. Achieved a TPU of 1.2e− 10, which eventually enabled us
to run the target dipolar disorder data.

14



References

[1] E. Michielssen, A. Boag, IEEE Trans. Antennas Propag. 44(8)(1996)
1086–1093.

[2] S. Chandrasekaran, M. Gu, T. Pals, SIAM J. Matrix Anal. Appl. 28(2006)
603–622.

[3] E. Candes, L. Demanet, Y. Lexing, SIAM J. Sci. Comput. 29(6) (2007)
2064–2093.

[4] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, PNAS 104(51) (2007)
20167–20172.

[5] A.V. Rangan, J. Comput. Phys. 231(7) (2012)9,

[6] X.V. Doan, S.A. Vavasis, ¡arXiv:1011.1839v1¿ (2010)

[7] A.V. Rangan , J. Comp. Phys. 231(1) (2012) 215–222.

[8] Y. Kluger, R. Basri, J.T. Chang, M. Gerstein, Genome Res.
13(4):(2003)703–716.

[9] http://graphics.stanford.edu/ seander/bithacks.html#CountBitsSetParallel.

15


