Implementation of Fast Biclustering Algorithm

Outline

Theoretical Introduction

- Clustering & Biclustering
- Applications
- Previous Attempts
- Our algorithm

High Performance Computing

- Complexity
- Problem Scale Matters
- What makes our code fast.
- Results
- Further work

Clustering & Biclustering

- Clustering
- Suppose given the data below

1. REPUBLICAN VOTE FOR PRESIDENT*

State									Yea	ar								
	00	04	08	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68
Alabama (AA)	35	21	24	8	22	31	27	48	14	13	14	18	19	35	39	42	70	14
Arkansas (AS)	35	40	37	20	28	39	29	39	13	18	21	30	21	44	46	43	44	31
Delaware (DE)	54	54	52	33	50	56	58	65	51	43	45	45	50	52	55	49	39	45
Florida (FA)	19	21	22	8	18	31	28	57	25	24	26	30	34	55	57	52	48	41
Georgia (GA)	29	18	31	4	7	29	18	43	8	13	15	18	18	30	33	37	54	30
Kentucky (KY)	49	47	48	25	47	49	49	59	40	40	42	45	41	50	54	54	36	44
Louisiana (LA)	21	10	12	5	7	31	20	24	7	11	14	19	17	47	53	29	57	23
Maryland (MD)	52	49	49	24	45	55	45	57	36	37	41	48	49	55	60	46	35	42
Mississippi (MI)	10	5	7	2	5	14	8	18	4	3	4	6	3	40	24	25	87	14
Missouri (MO)	46	50	49	30	47	55	50	56	35	38	48	48	42	51	50	50	36	45
North Car. (NC)	45	40	46	12	42	43	55	29	29	27	26	33	33	46	49	48	44	40
South Car. (SC)	7	5	6	1	2	4	2	9	2	1	4	4	4	49	25	49	59	39
Tennessee (TE)	45	43	46	24	43	51	44	54	32	31	33	39	37	50	49	53	44	38
Texas (TS)	31	22	22	9	17	24	20	52	11	12	19	17	25	53	55	49	37	40
Virginia (VA)	44	37	38	17	32	38	33	54	30	29	32	37	41	56	55	52	46	43
West Virginia (WV)	54	55	53	21	49	55	49	58	44	39	43	45	42	48	47	54	32	40

Clustering & Biclustering

- Clustering
- Suppose given the data below

1. REPUBLICAN VOTE FOR PRESIDENT*

State	Year																	
	00	04	08	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68
Alabama (AA)	35	21	24	8	22	31	27	48	14	13	14	18	19	35	39	42	70	14
Arkansas (AS)	35	40	37	20	28	39	29	39	13	18	21	30	21	44	46	43	44	31
Delaware (DE)	54	54	52	33	50	56	58	65	51	43	45	45	50	52	55	49	39	45
Florida (FA)	19	21	22	8	18	31	28	57	25	24	26	30	34	55	57	52	48	41
Georgia (GA)	29	18	31	4	7	29	18	43	8	13	15	18	18	30	33	37	54	30
Kentucky (KY)	49	47	48	25	47	49	49	59	40	40	42	45	41	50	54	54	36	44
Louisiana (LA)	21	10	12	5	7	31	20	24	7	11	14	19	17	47	53	29	5 7	23
Maryland (MD)	52	49	49	24	45	55	45	57	36	37	41	48	49	55	60	46	35	42
Mississippi (MI)	10	5	7	2	5	14	8	18	4	3	4	6	3	40	24	25	87	14
Missouri (MO)	46	50	49	30	47	55	50	56	35	38	48	48	42	51	50	50	36	45
North Car. (NC)	45	40	46	12	42	43	55	29	29	27	26	33	33	46	49	48	44	40
South Car. (SC)	7	5	6	1	2	4	2	9	2	1	4	4	ų	49	25	49	59	39
Tennessee (TE)	45	43	46	24	43	51	44	54	32	31	33	39	37	50	49	53	44	38
Texas (TS)	31	22	22	9	17	24	20	52	11	12	19	17	25	53	55	49	37	40
Virginia (VA)	44	37	38	17	32	38	33	54	30	29	32	37	41	56	55	52	46	43
West Virginia (WV)	54	55	53	21	49	55	49	58	44	39	43	45	42	48	47	54	32	40

Contd.

- Clustering:
 - Looking for similar rows
 - Low rank row sets
- Bi-Clustering:
 - Looking for rows and columns simultaneously
 - Low rank submatrices

Application – Computational Biology

- Patients and Gene
- Cases and Controls

Previous Attempts

- Naïve way:
 - check every possible submatrics
 - NP
- Iterative random methods:
 - Start from a initial submatrix and add/remove rows and columns to make submatrix low rank
 - A good Initial Condition is needed
- Spectral biclustering:
 - Iteratively remove rows and columns to get a low rank submatrix ---using SVD in every step
 - $O(N^4) \times big \ constant$

Our Algorithm

- For a given N×M matrix A, we are looking for some rows and columns whose intersection is a low rank matrix.
- We give every row and column a score then eliminate rows and columns with lower scores.

Let A be a $n \times m \{1, -1\}$ matrix. Let A_i be the *i*th row and R_i be its score. Similarly we define B_j as the *j*th column and C_j as its scores.

Let Z be a $d \times m$ {1, -1} matrix and Z_i and K_j be rows and columns.

Define $\langle \cdot, \cdot \rangle$ as the product of 2 vectors.

Then we can write SCORES as:

$$R_{i} = \sum_{j} \langle A_{j}, A_{i} \rangle^{2} - \sum_{j} \langle Z_{j}, A_{i} \rangle^{2}$$
(1)

$$C_{i} = \sum_{j} \langle B_{j}, B_{i} \rangle^{2} - \sum_{j} \langle B_{j}, B_{i} \rangle \langle K_{j}, K_{i} \rangle$$
(2)

Algorithm Description

- I. Pre-algorithm: Transform A into a binary matrix B
- II. Main Algorithm
 - 1. Give a score to each rows and columns
 - 2. Remove rows and columns with lowest scores
 - 3. Recalculate the scores for all remaining rows and columns, go to step 2
- III. The rows and columns remains at last forms a low rank submatrix.

Part 2: High Performance Computing

Complexity

- 2N interations
- Calculate 2N scores in every step
- Recall Scores:

$$R_{i} = \sum_{j} \langle A_{j}, A_{i} \rangle^{2} - \sum_{j} \langle Z_{j}, A_{i} \rangle^{2}$$
$$C_{i} = \sum_{j} \langle B_{j}, B_{i} \rangle^{2} - \sum_{j} \langle B_{j}, B_{i} \rangle \langle K_{j}, K_{i} \rangle$$

Contd.

- Luckily, we found a way to not recalculate the score, but update them
- When a row(col) is removed, there is only a small part in each score changes, we only need to remove these parts from scores.
- When a row is removed:

$$\begin{aligned} R'_{i} &= R_{i} - \langle A_{i}, a \rangle^{2} i \\ C'_{i} &= C_{i} - m - 2 \sum_{A_{k} \neq a} \langle A_{k}, a \rangle a_{i} a_{ki} + \sum_{Z_{k}} \langle Z_{k}, a \rangle a_{k} z_{ki} \end{aligned}$$

• When a column is removed:

$$C'_{i} = C_{i} - \langle B_{i}, b \rangle [\langle B_{i}, b \rangle - \langle K_{i}, k \rangle]$$

$$R'_{i} = R_{i} - n + d - 2 \sum_{B_{k} \neq b} b_{i} a_{ik} [\langle B_{k}, b \rangle - \langle K_{k}, k \rangle]$$

Contd.

- Luckily, we found a way to not recalculate the score, but update them
- When a row(col) is removed, there is only a small part in each score changes, we only need to remove these parts from scores.

Complexity

• For a n \times m matrix, the main body of our algorithm is:

1.Initialize scores
 2.Remove according to scores
 3.Update scores, and go to step 2

O((n+m)nm) O(m) or O(n) O(nm) O((n+m)nm)

O((n+m)nm) Memory bound

Problem Scale

- ASD (Sample data)
- Bipolar disorder
- Cancer

Memory Management

- Binary data can be compressed
- 32 entries:

• 100GB RAM or read 100GB 107 times or MPI

• How to measure speed

$$\begin{array}{l} \text{Time Per Unit} = \frac{\text{runnint time/s}}{nm(n+m)} \\ \text{Speedup} = \frac{\text{sequential time/s}}{\text{parallel time/s}} \end{array}$$

- Test data:
 - ASD Sample data
 - Random matrix

• Sequential version 0 MATLAB

SUPERSLOW

- Sequential version 1 C
- ASD data:
 - Running time: 120s
 - TPU: 8.56239321e-9

- Sequential version 2
 C
- Basic optimization
- Improvement on Bitwise operation
 - Popcount
 - Counting bits in parallel
- ASD data:
 - Running time: 80s
 - TPU: 5.70826214e-9

- Sequential version 3
 C
- Loop structure optimization
 - Loop unrolling
 - For(i=0;i<16;i++)
 Operation[i]
 - -> Operation[0]; Operation[1];
 - Operation[15];
- ASD data:
 - Running time: 38s
 - TPU: 2.71142452e-9

- Sequential version 4
- Improvement in memory access
 - Use of cache

Operation[0,array[s]]; Operation[1,array[s]];

Operation[15,array[s]];

->

temp = array[s]; Operation[0,temp]; Operation[1,temp];

Operation[15,temp];

- ASD data:
 - Running time: 27s
 - TPU: 1.92653847e-9

- Sequential version 5
- Simply add "--O3"
- ASD data:
 - Running time: 17.8s
 - TPU: 1.27008833e-9

Time Per Unit/ e-9s

Running time and Time Per Unit- different version

- OpenMP parallel version
- Choose the right loop to parallel
- Avoid synchronization
- ASD data:
 - 4-core
 - Running time: 6.01703s
 - TPU: 4.2933267e-10
 - Speedup: 2.9
 - 12-core
 - Running time: 3.14378s
 - TPU: 2.2404929e-10
 - Speedup: 5.6

• OpenMP version – core numbers

- OpenMP version Large Data (random matrix)
- Different ratio of n and m

- OpenMP version Large Data (random matrix)
- Bipolar disorder $10^4 \times 10^6$ 1 week
- Running time estimation

 $\mathrm{TPU} imes nm(n+m) = 1.2 imes 10^{-10} imes 10240 imes 819200 imes 829440$

= 834941s = 231h = 9d

What's next...

- Run our code on Bipolar disorder data $10^4~ imes~10^6$
- Generalization of the original bicluster algorithm !
- MPI version
- A way has been found

Even more ambitious...

- Possible MPI version
- Just found a way of avoiding to much data transfer between different computer.
 - Only O(n) MPI_Reduction in every iteration
- Separately store data
- Run on $10^5 \times 10^7$ Cancer data **Possible**!
- Still very challenging
 - Ideally, with currant efficiency, given 100 nodes each with 12 core. Estimated:

• Thank you.