
Implementation of Fast
Biclustering Algorithm

Outline

• Theoretical Introduction
• Clustering & Biclustering

• Applications

• Previous Attempts

• Our algorithm

• High Performance Computing
• Complexity

• Problem Scale Matters

• What makes our code fast.

• Results

• Further work

Clustering & Biclustering

• Clustering

• Suppose given the data below

Clustering & Biclustering

• Clustering

• Suppose given the data below

Contd.

• Clustering:

• Looking for similar rows

• Low rank row sets

• Bi-Clustering:

• Looking for rows and columns simultaneously

• Low rank submatrices

 Application –Computational Biology

• Patients and Gene

• Cases and Controls

Gene 1 Gene 2 Gene 3 · · · · · · · Gene M

Person 1

Person L

Patient 2

Patient N

Patient 1

· · · · · ·

Contrals

Cases A N×M

Z L×M

· · · · · ·

33268 gene expression measurements

ignored

ND = 193 cases

NX = 128 controls

Previous Attempts

• Naïve way:

• check every possible submatrics

• NP

• Iterative random methods:

• Start from a initial submatrix and add/remove rows and columns

to make submatrix low rank

• A good Initial Condition is needed

• Spectral biclustering:

• Iteratively remove rows and columns to get a low rank

submatrix ---using SVD in every step

• O(N4) × big constant

Our Algorithm

• For a given N×M matrix A, we are looking for some rows

and columns whose intersection is a low rank matrix.

• We give every row and column a score then eliminate rows

and columns with lower scores.

Algorithm Description

I. Pre-algorithm: Transform A into a binary matrix B

II. Main Algorithm

1. Give a score to each rows and columns

2. Remove rows and columns with lowest scores

3. Recalculate the scores for all remaining rows and columns,

go to step 2

III. The rows and columns remains at last forms a low

rank submatrix.

Part 2: High Performance Computing

Complexity

• 2N interations

• Calculate 2N scores in every step

• Recall Scores:

O(N3) O(N4)

Contd.

• Luckily, we found a way to not recalculate the score, but

update them

• When a row(col) is removed, there is only a small part in

each score changes, we only need to remove these

parts from scores.

• When a row is removed:

• When a column is removed:

Contd.

• Luckily, we found a way to not recalculate the score, but

update them

• When a row(col) is removed, there is only a small part in

each score changes, we only need to remove these

parts from scores.

O(N3) O(N4)

O(N2) O(N3)

Complexity

• For a n × m matrix, the main body of our algorithm is:

1.Initialize scores

2.Remove according to scores

3.Update scores, and go to step 2

O((n+m)nm)

O(m) or O(n)

O(nm)
O((n+m)nm)

O((n+m)nm)

Memory bound

Problem Scale

• ASD (Sample data) 102 × 104

• Bipolar disorder 104 × 106

• Cancer 105 × 107

Memory Management

• Binary data can be compressed

• 32 entries:

11101001000101011110101000100011

1 unsigned int

• Bipolar disorder 104 × 106 1.1 GB

• Cancer 105 × 107 110 GB

• 100GB RAM or read 100GB 107 times or MPI

What makes our code fast !

• How to measure speed

• Test data:

• ASD Sample data

• Random matrix

What makes our code fast !

• Sequential version 0 MATLAB

SUPERSLOW

What makes our code fast !

• Sequential version 1 C

• ASD data:

• Running time: 120s

• TPU: 8.56239321e-9

What makes our code fast !

• Sequential version 2 C

• Basic optimization

• Improvement on Bitwise operation

• Popcount

• Counting bits in parallel

• ASD data:

• Running time: 80s

• TPU: 5.70826214e-9

What makes our code fast !

• Sequential version 3 C

• Loop structure optimization

• Loop unrolling

• For(i=0;i<16;i++)

Operation[i]

-> Operation[0];

 Operation[1];

 ……

 Operation[15];

• ASD data:

• Running time: 38s

• TPU: 2.71142452e-9

What makes our code fast !

• Sequential version 4

• Improvement in memory access

• Use of cache

 Operation[0,array[s]];

 Operation[1,array[s]];

 ……

 Operation[15,array[s]];

->

 temp = array[s];

 Operation[0,temp];

 Operation[1,temp];

 ……

 Operation[15,temp];

• ASD data:

• Running time: 27s

• TPU: 1.92653847e-9

What makes our code fast !

• Sequential version 5

• Simply add “–O3”

• ASD data:

• Running time: 17.8s

• TPU: 1.27008833e-9

Contd.

What makes our code fast !

• OpenMP parallel version

• Choose the right loop to parallel

• Avoid synchronization

• ASD data:

• 4-core

• Running time: 6.01703s

• TPU: 4.2933267e-10

• Speedup: 2.9

• 12-core

• Running time: 3.14378s

• TPU: 2.2404929e-10

• Speedup: 5.6

What makes our code fast !

• OpenMP version – core numbers

What makes our code fast !

• OpenMP version – Large Data (random matrix)

• Different ratio of n and m

Contd.

What makes our code fast !

• OpenMP version – Large Data (random matrix)

• Bipolar disorder 104 × 106 1 week

• Running time estimation

What’s next…

• Run our code on Bipolar disorder data 104 × 106

• Generalization of the original bicluster algorithm !

• MPI version

• A way has been found

Even more ambitious…

• Possible MPI version

• Just found a way of avoiding to much data transfer

between different computer.

• Only O(n) MPI_Reduction in every iteration

• Separately store data

• Run on 105 × 107 Cancer data

• Still very challenging

• Ideally, with currant efficiency, given 100 nodes each with 12

core. Estimated:

Possible!

END

• Thank you.

