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Contd. 

• Clustering:  

• Looking for similar rows 

• Low rank row sets 

• Bi-Clustering: 

• Looking for rows and columns simultaneously  

• Low rank submatrices 

 



 Application –Computational Biology 

• Patients and Gene 

• Cases and Controls 
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33268 gene expression measurements 

ignored 

ND = 193 cases 

NX = 128 controls 



Previous Attempts 

• Naïve way: 

• check every possible submatrics 

• NP 

• Iterative random methods: 

• Start from a initial submatrix and add/remove rows and columns 

to make submatrix low rank 

• A good Initial Condition is needed 

• Spectral biclustering: 

• Iteratively remove rows and columns to get a low rank 

submatrix ---using SVD in every step 

• O(N4) × big constant 



Our Algorithm 

• For a given N×M matrix A, we are looking for some rows 

and columns whose intersection is a low rank matrix.  

• We give every row and column a score then eliminate rows 

and columns with lower scores. 



Algorithm Description 

I. Pre-algorithm: Transform A into a binary matrix B 

II. Main Algorithm 

1. Give a score to each rows and columns 

2. Remove rows and columns with lowest scores 

3. Recalculate the scores for all remaining rows and columns, 

go to step 2 

III. The rows and columns remains at last forms a low 

rank submatrix. 

 



Part 2: High Performance Computing 

 



Complexity 

• 2N interations 

• Calculate 2N scores in every step 

• Recall Scores: 

 

 

 

 

 

 

 

 

 

 

O(N3) O(N4) 
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• Luckily, we found a way to not recalculate the score, but 

update them 

• When a row(col) is removed, there is only a small part in 

each score changes, we only need to remove these 

parts from scores. 

• When a row is removed: 

 

 

 

• When a column is removed: 



Contd. 

• Luckily, we found a way to not recalculate the score, but 

update them 

• When a row(col) is removed, there is only a small part in 

each score changes, we only need to remove these 

parts from scores. 

O(N3) O(N4) 

O(N2) O(N3) 



Complexity 

• For a n × m matrix, the main body of our algorithm is: 

 

1.Initialize scores 

2.Remove according to scores 

3.Update scores, and go to step 2 

 

 

 

 

O((n+m)nm) 

O(m) or O(n) 

O(nm) 
O((n+m)nm) 

O((n+m)nm) 

Memory bound 



Problem Scale 

• ASD (Sample data)  102  × 104 

• Bipolar disorder   104  × 106 

• Cancer     105  × 107
 

 

 

 

 



Memory Management 

• Binary data can be compressed 

 

• 32 entries:   

11101001000101011110101000100011 

 

 

1 unsigned int 

 

• Bipolar disorder 104  × 106              1.1 GB 

• Cancer   105  × 107        110 GB 

 

• 100GB RAM  or  read 100GB 107  times  or  MPI 

  



What makes our code fast ! 

• How to measure speed 

 

 

 

 

 

 

 

• Test data:  

• ASD Sample data 

• Random matrix 



What makes our code fast ! 

• Sequential version 0 MATLAB 

 

SUPERSLOW 



What makes our code fast ! 

• Sequential version 1 C 

• ASD data: 

• Running time: 120s 

• TPU: 8.56239321e-9   



What makes our code fast ! 

• Sequential version 2 C 

• Basic optimization 

• Improvement on Bitwise operation 

• Popcount 

• Counting bits in parallel 

• ASD data: 

• Running time: 80s 

• TPU: 5.70826214e-9   



What makes our code fast ! 

• Sequential version 3 C 

• Loop structure optimization 

• Loop unrolling 

• For(i=0;i<16;i++) 

Operation[i]    

-> Operation[0]; 

 Operation[1]; 

 …… 

 Operation[15]; 

• ASD data: 

• Running time: 38s 

• TPU: 2.71142452e-9    



What makes our code fast ! 

• Sequential version 4  

• Improvement in memory access 

• Use of cache 

 Operation[0,array[s]]; 

 Operation[1,array[s]]; 

 …… 

 Operation[15,array[s]]; 

->  

 temp = array[s]; 

 Operation[0,temp]; 

 Operation[1,temp]; 

 …… 

 Operation[15,temp]; 

• ASD data: 

• Running time: 27s 

• TPU: 1.92653847e-9   



What makes our code fast ! 

• Sequential version 5  

• Simply add “–O3” 

• ASD data: 

• Running time: 17.8s 

• TPU: 1.27008833e-9   
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What makes our code fast ! 

• OpenMP parallel version 

• Choose the right loop to parallel 

• Avoid synchronization 

 

• ASD data: 

• 4-core 

• Running time: 6.01703s 

• TPU:  4.2933267e-10 

• Speedup:  2.9   

  

• 12-core 

• Running time: 3.14378s 

• TPU:  2.2404929e-10 

• Speedup:  5.6 

 



What makes our code fast ! 

• OpenMP version – core numbers 

 

 



What makes our code fast ! 

• OpenMP version – Large Data (random matrix) 

• Different ratio of n and m 
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What makes our code fast ! 

• OpenMP version – Large Data (random matrix) 

• Bipolar disorder 104  × 106          1 week 

• Running time estimation 

 

 



What’s next… 

• Run our code on Bipolar disorder data 104  × 106         

• Generalization of the original bicluster algorithm ! 

 

• MPI version 

• A way has been found 

 



Even more ambitious… 

• Possible MPI version 

• Just found a way of avoiding to much data transfer 

between different computer.  

• Only O(n) MPI_Reduction in every iteration 

• Separately store data  

 

• Run on 105  × 107 Cancer data     

• Still very challenging 

• Ideally, with currant efficiency, given 100 nodes each with 12 

core. Estimated: 

 

 

Possible! 



END 

• Thank you. 


