
An Investigation into Parallel SVD for

MATH-GA.2011.001: Andreas Kloeckner and Marsha Berger

Travis Askham, Steven Delong, and Michael Lewis
Courant Institute of Mathematical Sciences

December 23, 2012

Abstract

We discuss an investigation into parallelizing the computation of a singular value decom-
position (SVD). We break the process into three steps: bidiagonalization, computation of the
singular values, and computation of the singular vectors. We discuss the algorithms, parallelism,
implementation, and performance of each of these three steps. The original goal was to accom-
plish all three tasks using a graphics processing unit (GPU) but the final implementation uses a
combination of GPU computing and multicore central processing unit (CPU) computing. The
two parallelization standards used were OpenCL and OpenMP. Our SVD implementation and
its components are available freely online.

1 Introduction

The computation of an SVD is ubiquitous in numerical computing and has many applications [1],
[2], [3]. Given an m× n matrix A, its SVD is

A = UΣV ∗

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is diagonal with nonneg-
ative entries. The SVD allows for optimal low rank approximations to the original matrix and the
formation of a pseudo-inverse. It has applications in diverse areas, including data compression and
signal processing.

We investigate the use of parallelization methods to rapidly compute an SVD. Our algorithm
is broken into three stages: a bidiagonalization step, computation of the singular values, and
computation of the singular vectors. The bidiagonalization step is the most expensive and is
carried out purely on the GPU, using the OpenCL standard; we describe this step in Section 2. We
follow a “Double Divide and Conquer” approach as described in [4] for the following two steps and
we detail our findings in Sections 3 and 4. The parallelization of these steps is achieved primarily
through multithreaded computing using the OpenMP standard.

1

Our target problem size is determined by the bidiagonalization step. We consider matrices
whose side lengths are approximately 1,000 to 10,000. The lower end of this range is determined
by the overhead of transferring data to the GPU and the upper end of the range is determined by
the amount of data that can be stored in GPU memory.

2 The Bidiagonalization Step

The standard approach to computing an SVD first reduces the matrix to bidiagonal form [1]. In
particular, for a given matrix A, an upper-bidiagonal matrix B and two orthogonal matrices U and
V are found such that

A = UBV ∗ (1)

Then, the SVD of the bidiagonal matrix B is found and combined with (1) to produce an SVD for
A. This inititial reduction to bidiagonal form allows for the calculations in the remaining steps to be
sparse. It is for this reason that the bidiagonalization step is the most expensive computationally.

2.1 The Algorithm

We use the standard Golub-Kahan [3] bidiagonalization algorithm. This algorithm proceeds by
introducing zeros below the main diagonal and above the super-diagonal via Householder reflections.
Each step of the algorithm reduces the problem to that of bidiagonalizing the matrix which remains
after removing the first column and first row of the starting matrix. We describe one such step
below. Let Ak be your starting matrix. We would like to find Householder reflectors Uk and Vk
such that

UkAkV
∗
k =

αk βk

Ak+1

 (2)

Let x be the first column of Ak. To find (2), we must calculate a reflector which will zero out the
entries below the first entry in x. A stable [1] choice for this reflection vector is v = sign(x1)‖x‖e1+x.
Setting Uk = I − 2vv∗/(v∗v) will result in

Ak =

xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx

→ UkAk =

αk x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃

 (3)

2

Similarly, if we let r be the partial row starting at (UkAK)(1,2) we can find a reflector which – when
applied on the right – zeros out the first row of UkAk to the right of (UkAK)(1,2). If we let w be
this reflector, then setting Vk = I − 2ww∗/(w∗w) will result in

UkAk =

αk x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃

→ UkAkV
∗
k =

αk βk

Ak+1

 (4)

The process is then applied to Ak+1. Thus, we see that at each step we must calculate a left
reflection vector, apply a reflection on the left, calculate a right reflection vector, and apply a
reflection on the right.

2.2 Parallelism

The algorithm described above is rich in parallelism and it is reasonably straightforward to paral-
lelize on a GPU [2]. There are two main types of tasks for this algorithm. The first is to calculate
a reflection vector and the second is to apply that vector to the matrix.

The main requirement in calculating a reflection vector is finding the norm of a partial column
or partial row, denoted by x. As in [2], we perform this calculation using a reduction. Specifically,
we calculate the norm squared of x via a reduction and store the result in global memory. Each
work item in the initial step of this reduction stores a chunk of x in local memory and calculates
the sum of squares for that chunk. These chunks are then further reduced using a standard sum
redution algorithm. Once we have calculated the norm of x, the reflection vector can be stored
in place in the original matrix A by simply modifying the first entry of x and then scaling. The
scaling of each element in the modified x is independent of the other elements. However, there is
not much to be gained here as this step is light in terms of computation and heavy in terms of
global memory access.

Once the reflector is calculated, it is applied to a submatrix C of our original matrix A. We
divide this into two steps. First, we must calculate the inner product of the reflection vector with
the columns (left reflection) or rows (right reflection) of C. The inner product calculation for each
column or row is independent of the others. We limit our description to the case of a left reflection
for the sake of concreteness. Let v be the normalized reflector to be applied to C, i.e., we would
like to calculate p = v∗C, a row whose entries are the innerproducts of v with the columns of C.
To accomplish this, we use a row of 2D workgroups which marches down the columns of C as in
Figure 1. Each work item loads the corresponding data from C and then one work item per column
computes the inner product for that chunk of the column with the corresponding chunk of v.

After p = v∗C is calculated, the second step of applying the reflector to C modifies each entry in
C. In particular, Cij ← Cij − 2vipj . This step is independent for each entry in C and is limited by
the necessary global memory access. We accomplish this by assigning each work item an element

3

Figure 1: Work group layout for inner products

in C to modify and we lay out 2D work groups in a 2D array. The goal behind this layout is to
make efficient use of global memory access. The primary observation is that elements in the same
row of C are modified using the same entry of v, whereas elements in the same column of C are
modified using the same entry of p.

2.3 Some Further Implementation Details

The operations described in the subsection above were implemented in the heterogeneous platform
framework OpenCL. In order to do so, we first coded up a straightforward version of Golub-Kahan
in C, with no parallelization. This serial version proved helpful for prototyping and is provided
with the code release as described in the Conclusion. We then replaced the operations of the serial
Golub-Kahan implementation with OpenCL computations in order to parallelize.

A rather näıve first approach to the calculation of the dot products v∗C was to launch a separate
kernel per column and calculate the inner product via a reduction operation. This proved rather
slow and we saw a significant improvement when we switched to a single kernel launch with work
groups layed out as in Figure 1. Similarly, our initial approach to updating C, once v∗C was
computed, was to launch a separate kernel per column of C. When we replaced this approach
with the simple entry-wise approach described in the previous subsection, we again saw significant
improvements in the performance of our algorithm.

We note that as the Golub-Kahan algorithm proceeds, the size of the working set becomes
smaller and smaller. This creates an increasing load imbalance and an ever poorer communication
to computation ratio as the calculation proceeds. There are ways to deal with this [2], but we had to
ignore this issue due to time constraints. There are also alternatives to the Golub-Kahan algorithm

4

which are more efficient [1] in the case of tall-skinny matrices, i.e. A ∈ Rm×n with m � n. In
short, these alternatives choose a point in the original algorithm to perform a QR factorization
on the remaining matrix, decreasing the size of the working set. We were unable to explore the
effect of making such a change to the algorithm though we think it poses an interesting possibility
– in particular, the motivations to decrease the size of the working set are muddled when you’re
computing on a GPU.

Finally, we point out that it may appear we have to calculate the norm of two vectors in order
to calculate a reflection vector, one while finding the appropriate direction and the other while
normalizing that direction. For concreteness, let x ∈ Rn−k+1 be the first column of the working set
Ak. The reflection vector is then in the direction v = sign(x1)‖x‖e1 + x. Thus, we must calculate
‖x‖. Then, to apply v, we must first normalize it. However, we observe

‖v‖2 = x21‖x‖2 + 2x21‖x‖+ x21 + x22 + · · ·+ x2n−k+1 = x21‖x‖2 + 2x21‖x‖+ ‖x‖2 (5)

so that the norm of v can be found using a slight modification to the norm of x. This is reflected
in our OpenCL implementation.

2.4 Performance

While our algorithm is far from optimized, we would like to give a sense of its performance. To do
so, we timed our algorithm on a range of matrices in the dimensions we were targeting and reported
(see Table 1) the results in GFlops/s. The time used includes the transfer time to and from the
GPU. The flop count is based on the flop count of the Golub-Kahan algorithm, 4mn2 − 4/3n3 for
an m×n matrix. The compute device used was an AMD Radeon Cape Verde XT (7770 HD) with
1 GB of memory and a peak theoretical performance of 80 GFlops/s.

Table 1: Bidiagonalization Performance in GFlops/s

Size 1k × 1k 2k × 2k 4k × 4k 8k × 8k

GFlops/s (GPU) .597487 2.00485 3.3419 3.5486

While these numbers are intentionally conservative and a vast improvement over the performance
of our serial implementation, they are well off the peak theoretical performance of the chip and –
not surprisingly – the reported performance of other GPU implementations (for instance [2]).

3 Finding the Singular Values

In the first stage of evaluating the SVD of a general matrix, we reduced our matrix to a bidiagonal
matrix. In this second stage, we are concerned with finding the singular values of the resulting
bidiagonal matrix B.

5

3.1 The Algorithm

The details of the overarching algorithm for this section, referred to as Double Divide and Conquer
(dDC), can be found in [4]. Specifically, for our purposes we assume the matrix B is RN×N+1, with
the bidiagonal elements denoted by two real vectors b1 and b2, each of which are of length N .

B =

b11 b21 0 . . . 0

0 b12 b22
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 b1N b2N

This algorithm is recursive in nature, in that it solves two smaller problems before returning to
solve the problem at hand. In particular, we consider the K ×K + 1 bidiagonal submatrix B1 and
the N −K − 1×N −K bidiagonal submatrix B2, where B1 comes from the first K rows of B and
B2 from the last N −K − 1 rows, resulting in

B =

 B1 0
b1,K+1eK+1 b2,K+1e1

0 B2

 ,

where ej denotes the vector with all zeros except a 1 at index j. For the purposes of our imple-
mentation, we choose K = bN2 c. Let us assume we knew the correct SVD for the submatrices, i.e.
Bi = Ui (Σi 0) (Vi vi). Then it can be shown that

B = Ũ (M 0)
(
Ṽ ṽ

)T
where

M =

 r0 b1,K+1l1 b2,K+1f2
0 Σ1 0
0 0 Σ2

for l1 equal to the last row in V1 and f2 equal to the first row in V2. Proceeding forward, if we
further decompose M = UM (Σ 0)VM into its SVD, we find that our original matrix B can be
reduced to

B = ŨUM (Σ 0)
(
Ṽ VM ṽ

)T
= U (Σ 0) (V v)T .

From this formulation, we immediately see that the singular values of our matrix B are equivalent to
the singular values of this special matrix M . Furthermore, letting f̃ and l̃ be the first and last rows,
respectively, of Ṽ , we observe that f and l, the first and last rows of V , can be derived from the
equations f̃VM and l̃VM , respectively, each of which require O(N2) computation. Consequently, by
solving for the singular values, and first and last rows of submatrices (along with few other elements;
again, see [4] for specifics) we can recursively back out the singular values for our bidiagonal matrix,
all while using no more than O(N) space.

6

As for obtaining the singular values σi of M , it can be shown that they satisfy what is known
as the secular equation, namely

f(σi) = 1 +
∑
j

z2j
d2j − σ2i

= 0,

where z is the top row of M , and the dj are the diagonal elements of M (where d1 ≡ 0), or
equivalently the singular values of the lower levels. We immediately observe, assuming the dj are
ordered, that

0 < σ1 < d2 < σ2 < . . . < dN < σN .

Solving for these σi is a root finding problem, made somewhat difficult but the functional form.
However, when formulated in a slightly different way (see [5]), it can be solved relatively quickly
with Newton’s Method. In doing so, we observe that evaluation of f at each step requires O(N)
computation; when done over N singular values, and assuming O(1) iterations, we observe this
section requires O(N2) computation time.

3.2 Speedup Through Parallelization

The reason we originally selected this algorithm was due to its

• low memory requirements, and

• recursive nature,

both of which made it an ideal candidate for parallelization via the GPU. However, upon building
the sequential code, it became apparent that the GPU wouldn’t be appropriate for the recursive
steps. Specifically, the step that solves the secular equation requires a variety of case handling to
enhance its robustness in finding the singular values. Consequently, this left the only possibility
of parallelization via the GPU to the leaf cases, i.e. the base cases that need to be solved exactly
before building up the solution recursively. To that end, we have built a version of the singular
value solver that does exactly that on the GPU, before building up the final result recursively on
the CPU. However, for the purposes of testing, we also created a version of the singular value solver
that computes exclusively on the CPU.

Independent of the GPU, we notice that the recursive steps, namely the secular equation solver
and the first and last line computation steps, are both embarrasingly parallel, and thus warranted
use of OpenMP to speed up those steps. In particular, the secular equation solver requires solving
for N different singular values, and given the above mentioned separated nature of the values, can
be solved for in parallel with ease. As for the first and last line computations, these are matrix
vector multiplications, and are thus also embarrasingly parallel. Both of these sections, which we
observe to be O(N2) computation, were thus enhanced with OpenMP parallelization.

7

3.3 Results of Testing

As mentioned above, two parallelized versions of the singular value solver were created, namely

(1) one where the leaves are solved via GPU, while the recursive steps are enhanced with OpenMP
implementations, and

(2) one where both the leaves and the recursive steps are solved on the CPU, again with OpenMP
implementations for speedup.

For simplicity, we refer to version (1) as the one that uses GPU, while version (2) is the one that
does not. During testing, we ran calculations on M × N matrices for M = N and M = 2N and
for N = 20, 40, 80, . . . , 5120. Furthermore, the timing driver utilized various compilation flags (-g,
-O1, -O3), and were run using various thread counts for the OpenMP (1, 2, 4, 8). The testing
below was performed on a computer with a AMD FX-8150 Processor, 16 Gigabytes of RAM, with
Radeon HD 7770 GPU with 1G of memory.

As expected, there was no discernable difference in runtime between M = N and M = 2N ,
nor should we as both cases are handled the same way insofar as the singular value calculation is
concerned, and thus for simplicity we assume M = N .

Similarly, as one might expect, compiling the results with the nonoptimized -g flag had notice-
ably slower runtimes than those with the other optimized flags. For example, the singular value
solver without GPU for the 5120× 5120 matrix took 4.92 seconds using 4 OpenMP threads under
the -g flag, versus 2.55 seconds and 2.49 seconds using the -O1 and -O3 flags, respectively, resulting
in a reduction of ≈ 50% in runtime by optimizing in compiling. Similar speedups can be observed
across different N , threads, and also with the GPU, although the speedup is less potent for smaller
matrices. However, as apparent in the above example, there is little difference in runtime between
using the -O1 and -O3 flag across the different dimensions; consequently, we concern ourselves only
with the optimization flag set to -O1.

8

In timing our process across different numbers of OpenMP threads, there is a marked improvement
as the number of threads increases, regardless of whether the GPU is used. For example, the singular
value solver without GPU for the 5120 × 5120 matrix took 7.58 seconds using 1 OpenMP thread,
4.29 seconds with 2 threads, 2.56 seconds using 4 threads, and 1.73 seconds using 8 threads. This
implies decreases in runtime of 43%, 66%, and 77% for 2, 4, and 8 threads, respectively. Similarly,
in using the singular value solver with GPU for the 5120 × 5120 matrix took 8.05 seconds using
1 OpenMP thread, 4.55 seconds with 2 threads, 2.75 seconds using 4 threads, and 1.94 seconds
using 8 threads. Again, this implies decreases in runtime of 43%, 64%, and 74% for 2, 4, and 8
threads, respectively, when compared to the runtime for one thread. These speedup improvements
are observed both with and without GPU across all N , although more apparent for larger N than
smaller N , as there is a sunk cost for implementing OpenMP which impacts performance at lower
matrix sizes (N < 100).

With regards to the usage of GPU, we observe that, insofar as calculating singular values is con-
cerned, the GPU does not add value to the computation, at least for the matrix sizes in this analysis

9

(namely N ≤ 5120). In particular, there is the expected sunk cost of moving the data over to the
GPU and back, and thus adding considerable time for small matrices. For larger matrices, the
results are more comparable; for example the runtime on 4 threads for a 5120× 5120 matrix with
GPU is 2.75 seconds versus 2.55 seconds without, resulting in a 7% slowdown. The runtime on a
single thread for a 5120×5120 matrix with GPU is 8.05 seconds versus 7.58 seconds without, result-
ing in a 6% slowdown. In light of this, running singular value evaluation in the current setup using
the given algorithm is not recommended for matrices smaller than 5000 by 5000. Consequently, we
concern ourselves only with the version that does not make use of the GPU.

In regards to flop calculations, we first consider the first and last row calculation. Specifically,
this section is amenable to flop calculation as each for loop duration is known with reasonable
accuracy, although not perfect accuracy as there are some edge cases to concern ourself with. In
particular, this will be an issue as N gets larger, as the edge case is hit with higher frequency,
but for this calculation we will assume no edge cases. With this in mind we observe that, for a
matrix of size 2560× 2560, we observe 0.122 Gflops, 0.225 GFlops, and 0.421 Glops for 1, 2, and 4
threads, respectively. This results in speedups of 83% and 242% for 2 and 4 threads, respectively,
over the base case of 1 thread. These speedups are similarly observed for N down to around 320,
below which the speedups are less favorable. For example, on a 40 × 40 matrix, we observe 0.025
GFlops, 0.030 GFlops, and 0.035 GFlops for 1, 2, and 4 threads, respectively. This results in
speedups of only 16% and 35% for 2 and 4 threads, respectively, over the base case of 1 thread.
One possible reason for the low level of GFlops in these results is due to the fact that, given the
recursive nature of the algorithm, we are constantly moving in and out of the first and last line
function call, resulting in overhead in processing the for loop.

As for the secular equation solver, due to the iterative nature of this solver, it is less amenable to
flop calculation. Specifically, if the singular values are close together (as they are expected to be at
the higher levels of the algorithm), there are more edge cases that need to be handled. In the case
of the solver as currently implemented, if the Newton’s Method is taking too long, the algorithm
reverts to solving the value by the bisection method, which is notably slower. Furthemore, at the

10

higher levels, evaluating f will also take longer, for obvious reasons. With these caveats in mind,
we can consider the rudimentary calculation of “singular values evaluated per second”. We notice
that, at the highest level of solving for a 500×500 matrix, we obtain only 14955 singular values per
second with 1 thread versus 38194 singular values per second with 4 threads, resulting in a roughly
4 times speedup. However, at the lower levels, for example when N = 30, we obtain 223000 versus
917000 singular values per second with 4 threads, again resulting in a roughly 4 times speedup.
From this, we see that solving the secular equation is embarrasingly parallel. Furthermore, we
see that the expediency of the solver is much lower at large N when the evaluation of f takes
considerably longer and the singular values are more densely situated.

4 Finding Singular Vectors

This section addresses calculating the singular vectors given singular values. First the Twisted
Factorization algorithm is used to get singular vectors of the bidiagonal matrix. Then the House-
holder reflectors are applied to get the singular vectors of the original matrix. The algorithm used
is briefly outlined below, followed by a discussion of performance.

4.1 The Algorithm: Twisted Factorization

We are given a bidiagonal matrix B

BBB =

a1 b1 0 . . . 0
0 a2 b2 . . . 0

0
. . .

. . .
. . . 0

0 0 0 an bn

as well as its singular values σi.

Calculating the singular vectors of our bidiagonal matrix has the following steps, following [4],
for each σ

1. Create the double factorization for each σi, BBB
tBBB−σiIII = PPPDDD−PPP t = QQQDDD+QQQt where PPP is lower

diagonal with 1 s on the diagonal, and QQQ is upper diagonal with 1s on the diagonal, and
DDD−,DDD+ are diagonal.

2. Calculate vector γγγk = DDD−
kk +DDD+

kk − (a2k + b2k−1 − σ2i)

3. Find minimum over k of gamma, call it k∗

4. solve the twisted factorization problem NNN t
k∗x̃xxi = eeek8 , where Nk is given below.

5. Perform one more backsolve for accuracy of the system Nk∗Dk∗N
t
k∗xi = x̃i.

11

6. Find right singular vector by doing yi = Bxi
σi

7. Get the right and left singular vectors of A from the ones for B by applying the householder
reflections from the bidiagonalization procedure.

In essence, 2 inverse power iterations are performed in a specific way with a specific initial guess.
The first iteration is (BtB − σ2i I)x1 = NkDkN

t
kx

1 = γkxk where ek is the standard basis vector,
and γk is chosen so that x1k = 1, and

Nk =

1

p1
. . .
. . . 1

pk−1 1 qk

1
. . .
. . . qm−1

1

Dk = diag(D11, . . . , D1k−1, γk, D2k+1, . . . , D2m)

The value of γk can be determined from the elements of the forward and backward factorization as
γγγk = DDD−

kk +DDD+
kk − (a2k + b2k−1− σ2i). By then choosing to twist around the index k∗ that minimizes

γk, we ensure [6] that our initial guess is closely aligned with the singular vector being calculated,
increasing accuracy. An additional advantage of the twisted factorization is that the system

NkDkN
t
kx

1 = γkek

is equivalent to
N t
kx

1 = ek

which saves us one linear backsolve on our first iteration.
Aftersolving for x1, we do one additional solve

NkDkN
t
kx

2 = x1

And then normalize

x =
x2

||x2||
and we have calculated the vector x which is a right singular vector of the diagonal matrix B
corresponding to the singular value σi. To get the left singular vector, we simply calculate y = Bx

σi
which takes one bidiagonal multiplication.
Now it remains to “undo” the householder reflections to get from x and y to singular vectors u and

12

v of the dense matrix A. We do this by applying the householder reflectors in opposite order to
our bidiagonal singular vector.

v = (I − 2v1v
t
1) . . . (I − 2vnv

t
n)x

u = (I − 2u1u
t
1) . . . (I − 2unu

t
n)y

Which completes the algorithm.

4.2 Performance

In this section, we define p to be the minimum of m and n. All of the results are obtained by
testing on a computer with an AMD FX-8150 Processor, 16 Gigabytes of Ram, and a Radeon HD
7770 GPU with 1G of memory.

The calculation of singular vectors of the bidiagonal matrix is not well suited to be done on the
GPU, because for each singular vector we require O(p) calculations, each with dependencies. In
addition, we must have room to store the elements of the forward and backward factorizations, as
well as γ, which means we would spend a lot of time moving data to and from global memory.

Even the calculation of γ, which has a factor of p2 parallelism, is not well suited for the GPU.
This is because it requires the diagonals of the forward and backward factorizations for each singu-
lar value. This requires us to move 2p2 doubles to the device, and then p2 doubles back from the
device, which is expensive for the relatively small amount of computation we end up doing there
(about 7 flops per work item).

Because of the above factors, the twisted factorization was parallelized using only OpenMP, which
provided some speedup.

Table 2: Twisted Factorization Performance in Gigaflops

Size 1k × 1k 2k × 2k 4k × 4k 8k × 8k

Serial .166843 .175175 .187305
OpenMP, 8 Threads .358352 .44066 .4911 .5317

In Table 2, it is evident that the parallelization could be improved, as it does not achieve close to
the multiple of 8 increase one could hope to see. This in in part due to the chip architechture, where
each 2 cores share an FPU and part of the pipeline, causing some competition among threads. It
is also in part due to the multiple parallel sections in the code which each cost some overhead. The
algorithm could in principle all be done in one parallel region, giving increased speed. However,
the twisted factorization is an O(p2) algorithm in total, and applying the householder reflections
to get the singular vectors of A takes O(p ∗ (m2 + n2)) operations. As expected, for a 1000× 1000

13

matrix, ≈ 95% of the singular vector calculation time is spent applying the householder reflections.
This percentage only gets larger with matrix size. Because of this, most of the speedup effort will
be focused on the householder reflection section.

First the Householder reflections are applied to different singular vectors seperately in parallel
using OpenMP. This provided substantial speedup.
The Householder reflections applied to Y require accessing the reflectors from A that are lined up
in non-contiguous memory. By transposing A into a new variable, and using that to apply the
householder reflections on the right singular vectors, we get significant speedup. The transpose
itself is an order mn algorithm, and indeed it takes less than a percent of the total singular value
time when working on a 2000 × 2000 matrix. Loop unrolling was tried in the dot product and
application of the householder reflections, but it had an insignificant effect.

Table 3: Householder Application Performance in Gigaflops

Size 1k × 1k 2k × 2k 4k × 4k 8k × 8k

Serial .46435 .180354 .15176
OpenMP, 8 threads 1.6105 1.0148 .9658
OpenMP + Transpose, 8 threads 3.4345 2.8223 2.8486 3.1250
OpenMP + Transpose, 4 threads 2.2545 1.8157 1.8444 2.0512
OpenMP + Transpose, 2 threads 1.3404 1.2305 1.6853

5 Conclusion

We have presented a ground-up, parallel implementation of an SVD algorithm. We have seen
strong improvements over our original serial algorithm but we fall short in comparison to larger
scale implementations. There are many areas of our code which could benefit from further tuning
and design changes and we have presented some possibilities above. The current code is documented
and available freely under the MIT license at https://github.com/Skwaap/ddc-svd .

6 Acknowledgments

The authors would like to thank Andreas Kloeckner for many helpful discussions.

References

[1] Lloyd N. Trefethen and David Bau III, Numerical linear algebra, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1997. MR1444820 (98k:65002)

14

https://github.com/Skwaap/ddc-svd

[2] Fangbin Liu and Frank J. Seinstra, GPU-based parallel householder bidiagonalization, Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing, 2010, pp. 288–291, DOI
10.1145/1851476.1851512, (to appear in print).

[3] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal.,
1965, pp. 205–224.

[4] Taro Konda and Yoshimasa Nakamura, A new algorithm for singular value decomposition and its parallelization,
Parallel Computing 35 (2009), no. 6, 331 - 344, DOI 10.1016/j.parco.2009.02.001.

[5] A. Melman, Analysis of third-order methods for secular equations, Math. Comp. 67 (1998), no. 221, 271–286, DOI
10.1090/S0025-5718-98-00884-9. MR1432130 (98c:65061)

[6] Christof Vömel and Jason Slemons, Twisted factorization of a banded matrix, BIT 49 (2009), no. 2, 433–447, DOI
10.1007/s10543-009-0217-0. MR2507610 (2010c:65042)

15

	Introduction
	The Bidiagonalization Step
	The Algorithm
	Parallelism
	Some Further Implementation Details
	Performance

	Finding the Singular Values
	The Algorithm
	Speedup Through Parallelization
	Results of Testing

	 Finding Singular Vectors
	The Algorithm: Twisted Factorization
	 Performance

	Conclusion
	Acknowledgments

