
Investigation into a Parallel Singular Value
Decomposition

Travis Askham Steven Delong Michael Lewis

Courant Institute, New York

December 18, 2012

Askham, Delong, Boston Mike Parallel SVD

The Singular Value Decomposition

Given an m × n matrix A, its singular value decomposition is

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and
Σ ∈ Rm×n is diagonal with nonnegative entries. The SVD is
ubiquitous in numerical computing.

Features of the decomposition

The SVD can provide an optimal low-rank approximation to a
matrix.
Given an SVD you can form a pseudoinverse to your matrix.

Example application areas

Data compression.
Signal processing.
Pattern recognition.
Certain least squares problems.

Askham, Delong, Boston Mike Parallel SVD

The Bidiagonalization Step

Given a matrix A, a bidiagonalization of A is a decomposition

A = UBV T

where, again, U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices
but the matrix B ∈ Rm×n is bidiagonal.
What’s the point:

All further calculations can then be done on the sparse matrix
B.

Can be done stably using Householder reflectors.

A finite time algorithm (old fashioned).

Askham, Delong, Boston Mike Parallel SVD

Householder Reflectors and the Bidiagonalization
Algorithm

Left Householder

x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

→


x̃ x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃


Right Householder

x̃ x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃ x̃

→


xxx xxx 0 0 0 0

0
0

0 Ã
0
0


Askham, Delong, Boston Mike Parallel SVD

Computational Considerations

Features of the algorithm

Dense calculations.
The application of a Housholder reflector is independent for
each column.
The size of the working set reduces with each step.

Coding the algorithm for a GPU

Reduction: calculating vector norm to get the reflector
Both vector level and matrix level parallelization in applying
the reflector (to do)

Askham, Delong, Boston Mike Parallel SVD

Formulation of Problem

We consider the following equation:

B = UΣV T

for B ∈ Rn×(n+1) where

B =


b11 b21 0 · · · 0

0 b12 b22
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 b1n b2n


is a bidiagonal matrix.

Our goal: To obtain the singular values

(1) quickly, with
(2) low memory usage

Askham, Delong, Boston Mike Parallel SVD

Reduction of Problem

We notice that this system can be reduced to solving similar
subproblems, namely

B =

 B1 0
b1kek b2ke1

0 B2


where

(1) Bi are themselves bidiagonal matrices, and

(2) ej denotes the standard unit vectors with 1 in the jth
component

This is the fundamental design of any divide and conquer method.
What makes this process different is that we maintain low memory
usage by not retaining the singular vectors.

Askham, Delong, Boston Mike Parallel SVD

Formulation of Recursion

Given that
Bi = Ui (Σi 0) (Vi vi)

T

are the decomposition of the sub matrices, it can be shown that

B = Ũ (M 0)
(
Ṽ ṽ

)T
where

M =

 r0 b1k l1 b2k f2
0 Σ1 0
0 0 Σ2


where

(1) l1 is the last row in V1,

(2) f2 the first row in V2, and

(3) r0 can be similarly derived from results of the lower levels.

Askham, Delong, Boston Mike Parallel SVD

Formulation of Recursion (cont’d)

For simplicity, let

z = (r0 b1k l1 b2k f2)

Di = diag di

M = UM (Σ 0)VM

Observe that

B = ŨUM (Σ 0)
(
Ṽ VM ṽ

)T
= U (Σ 0) (V v)T

implies

the singular values of M are the singular values of B

the first row of V = f̃ VM and the last row of V = l̃VM

(and thus require O(n) space at any given time)

Askham, Delong, Boston Mike Parallel SVD

Conclusion of Recursion

This implies that by holding the

(1) singular values, and

(2) first and last rows

from lower levels, we can backsolve our desired singular values.
(Assuming we can solve for Σ and VM for a given M *cough*)

Askham, Delong, Boston Mike Parallel SVD

Solving for Σ,VM

Given our z and d = (d1, d2, . . . , dn), with d1 ≡ 0, we observe

f (σi) = 1 +
∑
j

z2j
d2
j − σ2i

= 0

This is known as the secular equation.

Observe (assuming we permute the system to order the di)

0 < σ1 < d2 < σ2 < . . . < σn

Given our σi , there exists a solution to find the columns vi of
VM .

Askham, Delong, Boston Mike Parallel SVD

Observation on Computation

The singular values can be computed independently

The individual components of f = f̃ VM and l = l̃VM can be
computed independently by calculating each column of VM

and doing the dot product.

This suggests the above calculations are amenable to OpenMP
(and they are)

Askham, Delong, Boston Mike Parallel SVD

Finding Singular Vectors

Given the singular values σi , right singular vectors are found
using a “Twisted factorization”, which is essentially an inverse
power iteration.

Left singular vectors are found from right singular vectors with
a matrix multiply.

Now we have the singular vectors for B, apply Householder
reflections to get U and V for A.

Recall the inverse power iteration to find the eigenvector v of a
matrix A corresponding to it’s smallest eigenvalue. We pick an
initial x0 and then solve repeatedly

Ax̃n+1 = xn, xn+1 =
x̃n+1

||x̃n+1||
With shift we can find eigenvectors of the eigenvalue closest to
some µ, in our case σ2i . We solve

(BtB − σ2i I)x̃ = γkek

Askham, Delong, Boston Mike Parallel SVD

Twisted Factorization

The twisted factoriation allows us to do an inverse power
iteration accurately and quickly.

First we compute the “forward” and “backward”
factorizations for each singular value.

BtB − σ2i I = P(D1)Pt = Q(D2)Qt

P =



1 0 0 . . . 0

p1 1 0 . . .
...

0 p2 1 . . .
...

0
...

. . .
. . . 0

0 . . . 0 pm−1 1


Q =



1 q1 0 . . . 0

0 1 q2 . . .
...

0 0 1
. . . 0

0
...

. . .
. . . qm−1

0 0 1


D1 = diag(D11,D12, . . . ,D1m), D2 = diag(D21,D22, . . . ,D2m)

Askham, Delong, Boston Mike Parallel SVD

Twisted Factorization 2

Given the Forward and Backward factorizations of BtB − σ2i I , the
Twisted factorization at k is

BtB − σ2i I = NkDkN
t
k

Where

Nk =



1

p1
. . .
. . . 1

pk−1 1 qk

1
. . .
. . . qm−1

1


Dk = diag(D11, . . . ,D1k−1, γk ,D2k+1, . . . ,D2m)

Where
γk = D1k + D2k − (α2

k + β2k−1 − σ2i)
Askham, Delong, Boston Mike Parallel SVD

Solving the Twisted Factorization for singular vectors

We solve the system NkDkN
t
k x̃ = γkek first, which through

the black magic of linear algebra is equivalent to Nt
k x̃ = ek .

For additional accuracy (needed specifically with clustered
singular values), we do one more backsolve NkDkN

t
kx = x̃ to

get our final singular value x for the reduced bidiagonal
matrix.

y = Bx
σi

gives our left singular vector for the reduced
bidiagonal matrix.

We still need to include the effects of the householder
reflections from the bidiagonalization.

A = H1BH
t
2 = H1(YΣX t)Ht

2

We apply the reflectors stored from the bidiagonalization part
to the outputs X and Y .

Askham, Delong, Boston Mike Parallel SVD

Parallelization Ideas

This process is completely independent for each σ .

Do the whole thing on the GPU

ABANDONED IMMEDIATELY - lots of O(n) sequential
calculations per work item. Things have to be stored in
global, lots of global access.

Can we at least do the Gamma Calculation on the GPU?
O(N2) independent entries

ABANDONED EVENTUALLY - way too much data transfer
from the CPU to the device, O(N2), not THAT many flops.

Ok, let’s use OpenMP. This seemed to work.

Askham, Delong, Boston Mike Parallel SVD

Additional Improvements

A few things can still be done to increase the speed of these
procedures

Possibly moving the householder reflection application to the
GPU would give some speedup. This is the slowest part (95%
of the Singular Vector time for 1k × 1k), so improvements
here would be worthwhile. However, we need to move O(N2)
data to the device, which might kill it.

The twisted factorization is done in pieces that work on all
vectors, and paralellized within. This could be changed to do
everything for an individual vector, and parallelize outside.
Also could do less vectors if desired. This is a fast part
anyway, so maybe the payoff isn’t worth it. . .

Askham, Delong, Boston Mike Parallel SVD

Performance Graphs – Singular Values

Askham, Delong, Boston Mike Parallel SVD

Performance Graphs – Singular Vectors

Askham, Delong, Boston Mike Parallel SVD

Image Compression Example

Askham, Delong, Boston Mike Parallel SVD

