
3D Fluid Simulation of Rayleigh-Taylor Instability on GPU

Xiaoyi Xie1,∗ Yu Guo2, and Xinwei Li3
1Department of Physics, New York University

2Courant Institute of Mathematical Sciences, New York University and
3Courant Institute of Mathematical Sciences, New York University

This is the final project paper for HPC Fall 2012 course in New York University. In this paper, we describe

an implemention of compressible inviscid fluid solvers on Graphics Processing Units using NVIDIA’s CUDA.

Using the method of lines approach with the third order Runge-Kutta time integration scheme, piecewise linear

reconstruction, and a Harten-Lax-van Leer Riemann solver, we achieve an overall speedup of aproximately 10

times faster execution on a laptop graphics card as compared to a single core on the host computer.

Keywords: Hydrodynamics, HLL Rieman Solver, Euler Equation, Rayleigh-Taylor Instability

I. INTRODUCTION

In natural world, there are lots of phenomon could be de-
scribed using physical system model. The aim of system
model is to obtain in mathematical form a description of the
dynamical behavior of a system in terms of some physically
significant variables. As the nature of the system changes, the
system variables change. Conservation of physical quantities
is a fundamental physical principle that is often used to derive
models in the natural sciences. In this paper, we put our focus
on an interesting hydrodynamics phenomon–Rayleigh Taylor
Instability. It’s what happens when you put a dense liquid on
top of a less-dense liquid. Plumes of liquid erupt and curl,
making beautiful, ever-shifting patterns. The exact patterns
depend on the relative density of both liquids, the purtabation
given on the interface, and the time they’re given to mix to-
gether. The dynamics of this process could be described by
Euler equations(assuming both fluid are inviscid). The equa-
tions represent conservation of mass(continuity), momemtum,
and energy. In differential form, Euler equations could be ex-
pressed as:

∂ρ

∂t
+∇ · ρ~u = 0 (1)

∂ρ~u

∂t
+∇ · (~u

⊕
(ρ~u)) +∇(p+Φ) = 0 (2)

∂E

∂t
+∇ · (~u(E + p)) = 0 (3)

(4)

Here, ρ denotes the density, ~u = (u, v, w) the veloc-
ity vector, p the pressure, Φ the gravitational potential, and
E the total energy(kinetic plus internal energy) given by
E = ρ(u2 + v2 + w2)/2 + p/(γ − 1). In all computations
we use γ = 1.4(which means both fluid are comparable to
ideal gas). Euler equations can also be expressed in vector
and conservation form like follows.

ρ
ρu
ρv
ρw
E

t

+

ρu
ρu2 + p
ρuv
ρuw

u(E + P)

x

+

ρv
ρuv

ρv2 + p
ρvw

v(E + P)

y

+

ρw
ρuw
ρvw

ρw2 + p
w(E + p)

z

=

0
0
0
gρ
gρw

(5)

∗ xx315@nyu.edu

The Euler equations are one particular example of a large
class of equations called hyperbolic systems of conservative
laws, which can be written on the form.

Ut + F (U)x +G(U)y +H(U)z = S(U) (6)

This class of PDEs exhibits very singular behaviour and

admits various kinds of discontinuous and nolinear waves,

such as shocks, rarefactions, phase boundaries, fluid and

material interfaces, etc.

II. NUMERICAL METHODS

To solve the Euler equations in two and three dimensions,
we will make use of an approximate riemann solver, explicitly
HLL (Harten - Lax Van Leer) riemann solver. First, to numer-
ically solve the Equ(6), the time dependent evolution can be
expressed in the semi-discrete form

dUijk

dt
=L(U) (7)

L(U) =−
Fi+1/2,jk − Fi−1/2,jk

∆x
−

Gi,j+1/2,k −Gi,j−1/2,k

∆y
(8)

−
Hij,k+1/2 −Hij,k−1/2

∆z
+ Sijk (9)

where Fi±1/2,jk,Gi,j±1/2,k,and Hi,j,k±1/2 are the fluxes at
the cell interface in x, y and z direction respectively. The
time integration can be done using the first-order forward Eu-
ler method,

Un+1 = Un +∆tL(Un) (10)

where Un is the conserved variable at t = tn and Un+1 is

the conserved variable after advancing one time step.

To obtain the fluxes at the cell interface, we can solve the
so-called Riemann problem. Given the variables at cell i, j, k
and i+1, j, k, we can calculate the x direction flux at the inter-
face, x = xi+1/2,j,k. The exact solution of this problem can
be solved numerically. But it is very expensive because itera-
tions are involved. Fortunately, we can use an approximate
Riemann solver. There are different approximate Riemann
solvers. Among them, HLL Riemann solver is an example
of efficient approximate Riemann solvers. Given the left state

2

UL and right state UR, the HLL flux can be written as,

FHLL =
α+FL + α−FR − α+α−(UR − UL)

α+ + α−
(11)

where α+ and α− are related to the minimal and maximum
eigenvalues of the Jacobians of the left and right states in the
form.

α± = MAX{0,±λ±(UL),±λ±(UR)}. (12)

Here, the minimal and maximum eigenvalues λ± are given
by,

λ± = v ± cs (13)

where cs =
√

γP/ρ is the sound speed. The HLL flux
formula can be used to calculate the flux at the cell interface.
For example, to obtain Fi+1/2,jk, substitute ”L” and ”R” by i
and i+ 1 in Eq(11).
The time step ∆t needs to satisfy the Courant-Fridrich-Lewy
condition. Thus the following condition must be satisfied,

∆t < ∆x/MAX(α±) (14)

III. HIGH ORDER SCHEME

It is very straightforward to extend the first-order method
we discussed in the above section to high order.
The time integration can now be done with a high-order
Runge-Kutta method. A very popular third-order Runge-
Kutta scheme in computational gas dynamics was designed
by Shu&Osher. The method combines the first-order forward
Euler steps with prediction& correction. The method is as fol-
lowing

U (1) = Un +∆tL(Un) (15)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1)) (16)

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2)) (17)

(18)

where L(U) is the right hand side of Eq(7). Un+1 is the

final value after advancing one time step from Un.

To achieve high order in space, the left and right states at
the cell interface must be reconstructed using high-order inter-
polation methods instead of using the values at the cell center.
A simple high-order reconstruction method is the piecewise
linear method(PLM) with a generalized minmod slope lim-
iter. To obtain pressure, density and velocity of the left and
right states at the cell interface i + 1/2, we need the states at
i− 1, i, i+ 1, and i+ 2. Note that two ghost cells are needed
at the boundaries. Given ci−1, ci, ci+1 the left-biased interface
value of the left state reads,

c
L
i+1/2 = ci + 0.5minmod(θ(ci − ci−1), 0.5(ci+1 − ci−1), θ(ci+1 − ci))

where c denotes pressure, density or velocity, 1 ≤ θ ≤ 2,
and the minmod function reads,

minmod(x, y, z) =
1

4
|sgn(x)+sgn(y)|(sgn(x)+sgn(z))min(|x|, |y|, |z|)

(19)

here the sgn function returns the sign of the number. This
becomes the more diffusive normal minmod limiter when

θ = 1, and becomes the monotonized central-difference lim-
iter when θ = 2. We usually use θ = 1.5. To obtain the right
state at i + 1/2, variable ci, ci+1, ci+2 are used in the right-
biased reconstruction with an expression similar to Eq(19).
More, specifically, the right state at interface i+ 1/2 reads,

c
R
i+1/2 = ci+1−0.5minmod(θ(ci+1−ci), 0.5(ci+2−ci), θ(ci+2−ci+1))

(20)

IV. GPU IMPLEMENTATION

Graphics Processing Units (GPUs) are specialized for math

intensive highly parallel computation. Studies involving fluid

dynamics benefits a lot by using spatial and temporal adaptive

mesh refinement. Our results show that computational fluid

algorithm is easy to achieve parallel computing. Our com-

putation is based on Geforce GT650M graphic card which

could be found installed on many current laptop computers.

NVIDIA CUDA allow programmers to define kernels which

can be executed in parallel by many threads on GPU. Threads

are organized into 1D,2D or 3D thread blocks while blocks

are organized into 1D or 2D grids. Each thread can access its

thread and block indices by two built-in variables threadIdx

and blockIdx. As discussed above, a GPU has an array of

SMs. Geforece GT650 has two SM. Each SM is composed

of 192 SP. In CUDA, each thread is executed on a single SP

while a block is decomposed into several wraps which are

executed on single SM. CUDA exposes the hardware memory

hierarchy by allowing threads to access data from multiple

memory spaces. All threads have access to the same global

memory. Each thread block has a shared memory visible to

all threads of the block and with the same set of registers.

There are also two additional read-only memories accessible

by all threads: the constant and texture memory.

The shared memory is much smaller than global memory,

typically 32 KB, but it is on-chip so it has very high register-

level bandwidth. A typical programming pattern utilizing this

fact is to stage data from global memory into shared memory,

process the data there and then write the results back to global

memory.

V. MAPPING FLUID SOLVER TO GPU

Usually fluid solver will use spatial grids to simulate actual
spatial physical domain. In computation, that means to malloc
a memory block to store physical elements data in grid form.
In order to easily tell different grid element, we will store data
sequentially according to its space grid index number(i, j, k).
In our case, each element in space have five physical variable
ρ, vx, vy, vz, p. Its value are stored in memory identified by
number i∗sx+j∗sy+k∗sz+l, sx = 5∗Y ∗Z, sy = 5∗Z, sz =
5. i, j, k correspond to element’s grid index. Mapping fluid
solver to GPU, is building linking between the thread’s ID and
element’s grid index, making each launched thread handle the
computation of one identical grid element. We build the con-
nection between thread ID and grid index number easily by
the following method. If we need to handle X*Y*Z elements.
We could launch X*Y*Z threads correspondingly.

3

threadID = blockDim.x * blockIdx.x + threadIdx.x;

i = threadID/(Y*Z);

j = threadID/Z - i*Y;

k = threadID - (threadID/Z)*Z;

Nowadays, the global memory of GPU is typically larger
512MB or 1GB. The size of global memory will constrain the
memory size a program could malloc on device. In order to
achieve maximum speed and efficiency. We malloc and free
every memory block on device. This method is fast, but could
only handle medium grid size (maximum 96x96x288 with
1GB global memory) In order to compute larger grid size, one
way is to map host pageable memory to device. Since a grid
size of 96x96x288 is sufficient for our simulation. We’ll focus
on the speedup aspect of our simulation. We launch several
kernels to handle ourschemes step by step. In the following,
we list our pseudo-code:

allocate memory for conserved variables, physical

variables on GPU

call kernels for flux computation,

call kernels for state eigen value computation, find

maximum sound speed on CPU, call kernels for L(U)

computation,

call kernels for time update Uadv = U +∆tL(U),
copy Uadv to U
update dt info on CPU

if (t ¡ tmax) repeat above steps

The kernel code for the flux computation is listed below.
Note that we make use of parrallel reduction to get maximum
sound speed in our code.

#define BLOCK_SIZE 256

...

int i, j, k, l,N;

float AlphaPlus,AlphaMinus,max;

float SoundSpeedL, SoundSpeedR;

int Sx = 5*(Y)*(Z), Sy = 5*(Z), Sz = 5;

int threadID = blockDim.x*blockIdx.x + threadIdx.x;

if(threadID < NThreads){

i = threadID/(Y*Z);

j = threadID/(Z) - i*(Y);

k = threadID - (threadID/(Z))*(Z);

N = Sx*i + Sy*j + Sz*k;

__shared__ float local_max[BLOCK_SIZE];

/***** x from 0 to X-1 **********/

AlphaPlus = 0.;

AlphaMinus = 0.;

max = 0.;

SoundSpeedL = sqrtf (GAMMA * physL[N+4] / physL[N+0]);

SoundSpeedR = sqrtf (GAMMA * physR[N+4] / physR[N+0]);

if (AlphaPlus < physL[N+1] + SoundSpeedL)

AlphaPlus = physL[N+1] + SoundSpeedL;

if (AlphaMinus < -physL[N+1] + SoundSpeedL)

AlphaMinus = -physL[N+1] + SoundSpeedL;

if (AlphaPlus < physR[N+1] + SoundSpeedR)

AlphaPlus = physR[N+1] + SoundSpeedR;

if (AlphaMinus < -physR[N+1] + SoundSpeedR)

AlphaMinus = -physR[N+1] + SoundSpeedR;

for (l=0; l<5; l++) {

N = Sx*i+Sy*j+Sz*k+l;

F_mid[N] = (AlphaPlus*FL[N]+AlphaMinus*FR[N] \

-AlphaMinus*AlphaPlus*(UR[N]-UL[N]))/(AlphaPlus+AlphaMinus);

}

if (max < AlphaPlus) max = AlphaPlus;

if (max < AlphaMinus) max = AlphaMinus;

local_max[threadIdx.x] = max;

__syncthreads();

volatile float *c = local_max;

float temp;

if(blockIdx.x < gridDim.x - 1){

for(unsigned int s=blockDim.x/2; s>32; s>>=1){

if(threadIdx.x < s){

temp = c[threadIdx.x];

c[threadIdx.x] = temp = (temp < c[threadIdx.x + s])? \

c[threadIdx.x + s] : temp;

}

__syncthreads();

}

if(threadIdx.x < 32)

{

temp = c[threadIdx.x];

c[threadIdx.x] = temp = (temp < c[threadIdx.x + 32])? \

c[threadIdx.x + 32] : temp;

temp = c[threadIdx.x];

c[threadIdx.x] = temp = (temp < c[threadIdx.x + 16])? \

c[threadIdx.x + 16] : temp;

temp = c[threadIdx.x];

c[threadIdx.x] = temp = (temp < c[threadIdx.x + 8])? \

c[threadIdx.x + 8] : temp;

temp = c[threadIdx.x];

c[threadIdx.x] = temp = (temp < c[threadIdx.x + 4])? \

c[threadIdx.x + 4] : temp;

temp = c[threadIdx.x];

c[threadIdx.x] = temp = (temp < c[threadIdx.x + 2])? \

c[threadIdx.x + 2] : temp;

temp = c[threadIdx.x];

c[threadIdx.x] = temp = (temp < c[threadIdx.x + 1])? \

c[threadIdx.x + 1] : temp;

}

__syncthreads();

if(threadIdx.x == 0){

global_max[blockIdx.x] = local_max[threadIdx.x];

}

} else {

int s = 0;

for(s=(NThreads - (gridDim.x-1)*blockDim.x)/2;s>0; s>>=1){

if(threadIdx.x < s) {

temp = c[threadIdx.x];

c[threadIdx.x] = temp = (temp < c[threadIdx.x + s])? \

c[threadIdx.x + s] : temp;

}

__syncthreads();

}

if(threadIdx.x == 0){

temp = c[0];

c[0] = temp = (temp < c[NThreads - (gridDim.x - 1)*blockDim.x - 1]) ?

c[NThreads - (gridDim.x - 1)*blockDim.x -1]: temp;

global_max[blockIdx.x] = local_max[0];

}

}

}

}

VI. EMPIRICAL RESULTS

All the problems we try to do will be run on a Geforce

GT650M card. we show the technical specifications of

Geforce GT650M in Table I. The corresponding CPU com-

parison cases are run on an quad-core i7(typically one core is

responble for the calculation of sequential code).

A. 2D Rayleigh-Taylor Instability

We make use of the follow set up to simulate 2D Rayleigh-
Taylor.

Domain

2D: -0.25 x 0.25, -0.75 z 0.75

3D: Same as in 2D, but with the y domain included:

-0.25 y 0.25 (the z direction is still the

direction of gravity.)

Boundary conditions

2D: Periodic in x, reflecting in z

3D: Same as in 2D, but with periodic y boundaries

Equation of state

4

TABLE I.

Technical specifications of NVIDIA’s Geforce GT650 graphics card.

Compute Capability: 3.0

Total amount of global memory: 1 GBytes

2Multiprocessors x 192CUDA Cores/MP: 384 CUDA Cores

GPU Clock rate: 0.90 GHz

Memory Clock rate: 2508.00 Mhz

Memory Bus width: 128-bit

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor 2048

Maximum number of threads per block: 1024

Maximum sizes of each dimension of a block: 1024 x 1024 x 64

Maximum sizes of each dimension of a grid: 2147483647 x 65535 x 65535

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Adiabatic with = 1.4

Initial density

= 1 ifor y 0.0 and = 2 for y > 0.0

Initial pressure

The pressure is initialized to give hydrostatic

equilibrium: P = 2.5 - gy.

Initial velocity

2D: For the single mode perturbation, we perturb

the y velocity with A [1+cos(2x/Lx)] [1+cos(2y/Ly)]/4

with Lx and Ly being the size of the x and y domains

respectively, and A = 0.01. For the random perturbation,

the y velocity is given a random value between -A/2 and A/2.

3D: Same as in 2D, but for the single mode perturbation,

vy is A [1+cos(2x/Lx)] [1+cos(2y/Ly)] [1+cos(2z/Lz)]/8

with Lz being the size of the z domain.

By setting our grid dimemsion to 32x2x96, 64x2x192,

128x2x384, we get the following density contour of 2D

Rayleigh-Taylor Instability result using our sequential code.

0 5 10 15 20 25 30
0

20

40

60

80

0 10 20 30 40 50 60
0

50

100

150

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

0 50 100 150 200 250
0

100

200

300

400

500

600

700

0.99

1.11

1.23

1.35

1.47

1.59

1.71

1.83

1.95

FIG. 1. (Color online) The density contour of 2D Rayleigh-Taylor

Instability for single mode perturbation. The up fluid density is 2, the

down fluid density is 1. The fluid elememt is subject to gravitational

force in vertical direction.

FIG. 2. (Color online) The density contour of 2D Rayleigh-Taylor

Instability for multimode perturbation.

B. 3D Rayleigh-Taylor Instability

By setting our grid dimemsion to 32x32x96, 64x64x192,

128x128x384, we could get more accurate density contour of

Rayleigh-Taylor Instability in 3 Dimension. We also make use

of visit to visualize our 3d result.

FIG. 3. (Color online) The density constour of 3D Rayleigh-Taylor

Instability. The cell dimemsion is 64x64x192. Simulation time is

12.000690.

C. GPU parallel code test

In the following, we present several numerical tests to

access the computational efficiency of our GPU implemen-

tion. To this end, we compare runtimes on NVIDIA GeForce

GT650M with runtimes on 2.3 GHz Intel Core i7. To ensure

a fair comparison, we have used the same design choices for

the GPU implementations, trying to retain a one-to-one corre-

spondence of statements in the CPU and GPU computational

kernels.

Another important question is accuracy. The numerical

method considered in the paper is stable and the accuracy.

5

Our tests indicate that the difference between single preci-

sion(GPU) and double precision(CPU) results are of order

10−6.

104 105 106 107

Grid Size

10-2

10-1

100

101

102

Ti
m
e
[s
]

FIG. 4. Running time of a single timestep for CPU code (sphere)

and GPU code (asterisk) for 3D Rayleigh-Taylor instability with grid

sizes N = 16x16x48, 32x32x96, 64x64x192, 96x96x288. The dia-

monds show the ratio of the CPU and GPU running time.

104 105 106 107

Grid Size

10-2

10-1

100

101

Ti
m
e
[s
]

FIG. 5. Running time of a single timestep for direct mapping gpu

code(sphere) and GPU code making use of shared memory (asterisk)

for 3D Rayleigh-Taylor instability with grid sizes N = 16x16x48,

32x32x96, 64x64x192, 96x96x288. The diamonds show the ratio of

the running time.

First, we directly map our sequential scheme to GPU. Mal-

loc global memory on device for each calculation term (con-

served variable, flux, physical variable). Then, we make use

of shared memory on device, instead of getting elements from

global memory, do the calculation, and write back to global

memory. We first load data from global memory to shared

memory, do the calculation with data elements in the shared

memory then write back to global memory. Since shared

memory has less access time. The runtime will get further

speedup. Fig(4) compares the runtime between sequential

code and direct mapping GPU code. Fig(5 compares the run-

time between direct mapping GPU code and GPU code mak-

ing use of shared memory.

Since there are several kernels in the parrallel code, it would

be better to have a clear idea about the runtime and efficiency

of each kernel. Profiling information will aid our program

optimization. In the following, we list the profiling informa-

tion of kernels generated by NVIDIA command line profiler

(nvprof). by comparing the gpu profile result, we know that

making use of shared memory in our scheme will get two to

three times speed up.

TABLE II. profiler for kernels using global memory.

Time(%) Time Calls Avg Name

14.41 27.26ms 19 1.43ms h Ucalc

10.68 20.20ms 3 6.73ms h StateX

8.86 16.75ms 12 1.40ms h Ucalcinv

6.26 11.83ms 3 3.94ms h FluxMidX

6.17 11.66ms 3 3.89ms h FluxMidZ

6.13 11.60ms 3 3.87ms h FluxMidY

5.99 11.34ms 3 3.78ms h FluxCalcPX

5.99 11.33ms 3 3.78ms h FluxCalcPY

5.86 11.09ms 3 3.70ms h FluxCalcPZ

5.68 10.75ms 3 3.58ms h StateZ

5.67 10.72ms 3 3.57ms h StateY

4.43 8.38ms 1 8.38ms h U update3

4.19 7.92ms 1 7.92ms h U update2

3.57 6.75ms 1 6.75ms h U update1

1.62 3.07ms 3 1.02ms h BoundaryZ

1.32 2.49ms 3 829.21us h Cal Source

1.26 2.38ms 3 792.90us h BoundaryY

1.23 2.33ms 3 777.89us h BoundaryX

0.64 1.22ms 1 1.22ms init water oil 3d

0.05 86.91us 9 9.66us [CUDA memcpy DtoH]

[1] Peng Wang, Tom Abel, Ralf Kaehler, Adaptive mesh fluid simu-

lations on GPU.

[2] Trond Runar Hagen..etc, Solving the Euler Equations on Graph-

ics Processing Units.

6

TABLE III. kernel profiling result for parrallel code using shared

memory.

Time(%) Time Calls Avg Name

11.57 8.00ms 3 2.67ms h StateX

10.49 7.26ms 3 2.42ms h FluxMidY

9.62 6.66ms 19 350.32us h Ucalc

9.57 6.62ms 3 2.21ms h FluxMidX

9.04 6.26ms 3 2.09ms h FluxMidZ

6.83 4.72ms 12 393.62us h Ucalcinv

6.29 4.35ms 3 1.45ms h StateY

6.20 4.29ms 3 1.43ms h StateZ

5.78 4.00ms 1 4.00ms h U update3

4.90 3.39ms 1 3.39ms h U update2

3.88 2.68ms 1 2.68ms h U update1

3.04 2.10ms 6 350.52us h FluxCalcPY N

3.00 2.08ms 6 346.41us h FluxCalcPX N

2.93 2.02ms 6 337.31us h FluxCalcPZ N

1.70 1.17ms 3 390.93us h BoundaryZ

1.51 1.04ms 3 347.22us h Cal Source

1.47 1.02ms 3 338.77us h BoundaryY

1.36 941.61us 3 313.87us h BoundaryX

0.73 506.34us 1 506.34us init water oil 3d

0.08 57.54us 9 6.39us [CUDA memcpy DtoH]

