
Parallel Radix Sort Algorithm with MPI
Implementation and Analysis

Author: Yourii Martiak

New York University

December 20, 2012

Introduction

Among many problems in computer science, sorting is probably most common. Due to its applicability
to different domains in the field, sorting algorithms are often used in the majority of business and
scientific applications. Many different serial sorting algorithms have been developed over the years
and many have become standards, fine-tuned for use in specific scenarios. Yet, because of this wide
range of applications, the need for optimization and speed has always been in place. With the
emergence of multi-core processors, many of the serial algorithms have been successfully parallelized
and some new algorithms were developed. As a result, processing time have been reduced with
varying success. The reality is that some algorithms are simply easier to parallelize than others.

The goals of this paper are to look at the details of implementation a parallel sorting algorithm and
analyze the parts where the efficiency and bottlenecks come from, as they relate to overall performance
common to most parallel algorithms.

The two algorithm implementations selected for this purpose:

1. Serial Radix Sort

2. Parallel Radix Sort

Implementation

Both algorithms are implemented in C programming language. Parallel Radix Sort is also using
Message Passing Interface (MPI) to accomplish inter-process communications.

Serial radix sort was implemented as follows:

• For each pass scan g consecutive bits from LSD

• Store keys in 2^g buckets according to g bits

• Count how many keys each bucket has

• Compute exclusive prefix sum for each bucket

• Assign starting address according to prefix sums

• Examine g bits to determine bucket and move key to that bucket

As a rule, any parallel sort implementation involves running multiple sections of regular sort algorithm
on multiple processors in parallel. When each processor is done, the results are communicated between
the processors, and this pattern maybe repeated multiple times until the whole sequence is completely
sorted.

Parallel radix sort implementation is similar to the above with a few exceptions. First, keys must be
stored and moved across different processors. To accomplish this task, MPI is used for inter-process
communication. As a result of the above, each processor can end up having varying number of keys to
manage after each, which requires additional work to be done for keeping track of these moves. Here
are the steps to parallel radix sort implementation:

• Split initial problem set into multiple subsets and assign to different processors

• Count number of keys per bucket by scanning g bits every pass (local operation)

• Move keys within each processor to appropriate buckets (local operation)

• 1-to-all transpose buckets across processors to find prefix sum (global operation)

• Send/receive keys between the processors (global operation)

Performance Implications

Parallel sort performance then depends on the following factors:

• total number of keys

• total number of processors (number of partial sequences to be sorted by each individual
processor)

• time spent sorting local sequence by each processor

• time spent for processor communication

Considering the above points, we can see that to optimize parallel sorting algorithm, it is important to
partition the individual sequences in a way to ensure balanced processor workload and to avoid any
processor idling time while waiting for communications to be completed. At the same time,
communication needs to be done as efficiently as possible. The latter can be affected by the number of
nodes, frequency of communication, message payload and latency on the network. Previous research
on this subject indicated that for a large number of keys, communication times take significant part of
the total execution time.

Scalability of parallel radix sort is not without limits. The main limiting factor becomes the
communication part, mainly the bandwidth and the latency of the network. This is simply because with
adding more nodes for greater parallelization and ability to handle larger problem sizes, there will be a
point of over saturation and message contention due to the above limitations.

Performance Results

Both algorithms were tested on the same hardware, having four processors (two hyper-threaded real
cores) each running at 2.3GHz clock speed with 3MB cache per core. Machine has 4GB of random
access memory.

Tests were done for different problem sizes, namely 1,000 to 10,000,000 numbers increasing each time
by a factor of 10. A set of tests was done on code compiled without optimization flags and then the
same test set was repeated for compilation with -O3 flag turned on. Also, varying number of MPI
processes and different number of bit-sampling for each algorithm pass were used. The results are
listed at the end of this document.

Parallel radix sort achieved a max speedup of 1.8 over the serial radix sort, close to our expectations.
Some things came as surprise. Optimization flag had little effect on parallel algorithm performance,
whereas it helped to greatly improve performance of the serial radix sort algorithm.

Conclusion

As per results of all benchmarks, it became apparent that parallel radix sort performance is sub-par for
small problem sizes. However, it gets better and quickly surpasses the serial radix sort speed as the
problem size grows, while performance of serial algorithm goes down.

Maximum speedup of 1.8 over the serial version was achieved using 8-bit sampling having number of
MPI processes equal number of processors on the machine and having large enough problem size.

Using 8-bit sampling per pass seems to work best to achieve balance between local processor work and
the message passing overhead. Minimizing the number of buckets per processor (by reducing sampling
to 4-bit) appeared to be counter productive due to increase in payload size per message (more keys per
bucket that need to be sent across).

Increasing problem size while scaling the number of processors results in better performance up to the
point of increased number of messages becoming a bottleneck and negating any performance gain that
was achieved by parallelization.

Performance Data

Source Code and Instructions

Source code for this project is freely available and can be downloaded from:

https://github.com/ym720/p_radix_sort_mpi/tree/master/p_radix_sort_mpi

After downloading the project, run make command in the project directory to build the files using
Makefile provided with the project. The code for this project was built and tested on Ubuntu Linux
12.04 using the following tools and packages:

gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3

mpiexec (OpenRTE) 1.5.4

Both - serial and parallel radix sort input should be a file with the list of numbers listed one number per
line. To generate a sample test file with random numbers, dataset_gen program is provided with the
project, run dataset_gen for usage instructions.

For the test, included run_test.sh bash script can be used. The script runs serial followed by a parallel
version for a set of different problem sizes from 1,000 to 10,000,000.

References

1. Wikipedia – Radix Sort: http://en.wikipedia.org/wiki/Radix_sort

2. Robert Sedgewick, Algorithms in C, Addison-Wesley Publishing Company, 1990

3. Shin-Jae Lee, Minsoo Jeon, and Dongseung Kim, Partitioned Parallel Radix Sort, 2002:
http://ebookbrowse.com/2002-09-partitioned-parallel-radix-sort-pdf-d54143025

4. Andrew Sohn, Yuetsu Kodama, Load Balanced Parallel Radix Sort, 1998:
https://docs.google.com/open?
id=13nlm1wEgYIrHJxdHTwa8tXptK_RjpzZP7ZnUx3pVjGeb5kp2qZS4GseSq1JG

5. Miguel Palhas, Parallel sorting algorithm implementation in OpenMP and MPI, 2012:
https://github.com/naps62/parallel-sort

http://en.wikipedia.org/wiki/Radix_sort
https://github.com/ym720/p_radix_sort_mpi/tree/master/p_radix_sort_mpi
https://github.com/naps62/parallel-sort
https://docs.google.com/open?id=13nlm1wEgYIrHJxdHTwa8tXptK_RjpzZP7ZnUx3pVjGeb5kp2qZS4GseSq1JG
https://docs.google.com/open?id=13nlm1wEgYIrHJxdHTwa8tXptK_RjpzZP7ZnUx3pVjGeb5kp2qZS4GseSq1JG
http://ebookbrowse.com/2002-09-partitioned-parallel-radix-sort-pdf-d54143025

	Parallel Radix Sort Algorithm with MPI

