
Parallel Radix
Sort with MPI
Yourii Martiak

Why sorting?
● One of the most common problems

in computer science
● Applicable to different domains in the

field
● Variety of serial sorting algorithms

available

Sorting evolution
● Emergence of multi-core hardware

prompted serial algorithm
parallelization, although with varying
success

● Some algorithms are easier to
parallelize than others

● New parallel sorting algorithms were
developed

Parallel Sorting Basics
● Split unsorted sequence into equal size

partitions and distribute across multiple
processors

● Run serial sorting algorithm on each partition
in parallel

● When each processor done sorting its own
data, communicate results with other
processors

● Repeat multiple times until the whole
sequence becomes sorted

Performance Factors
● The size of input data set
● Number of processors (number of partial

sequences partitioned across processors)
● Time spent sorting each individual sequence
● Time spent on inter-processor

communication
● Previous research shows that for large

problem sets communication becomes major
perfomance bottleneck

Radix Sort
● Non-comparative
● Sorts data by evaluating one of group of

digits at a time
● Not limited to integers
● MSD and LSD variety
● Time complexity O(k*n) for n keys each

having k or fewer digits
● In many cases an improvement over

comparative sort for large data sets

Radix Sort Example
Unsorted sequence {170, 45, 75, 90, 802, 24, 2, 66}

LSD Pass 1
[0] 170 90
[1]
[2] 802 2
[3]
[4] 24
[5] 45 75
[6] 66

Continue until all digits sorted ...

Radix Sort Implementation
● P - number of processors
● n - problem size (total number of keys)
● g - group of bits examined during each pass
● b - number of bits for a number (32-bit int)
● r - number of passes (b / g)
● B - number of buckets, 2^g

Radix Sort Implementation
● For each pass scan g consecutive bits from

LSD
● Store keys in 2^g buckets according to g bits
● Count how many keys each bucket has
● Compute exclusive prefix sum for each

bucket
● Assign starting address according to prefix

sums
● Examine g bits to determine bucket and

move key to that bucket

Parallel Radix Sort
● Similar to serial radix sort algorithm
● Big difference is that keys are stored across

different processors
● Keys are moved across different processors
● Each processor can end up having varying

key counts after each pass
● Given P processors and B buckets, each

processor holds B / P buckets

Parallel Radix Sort
Implementation
● Split initial problem set into multiple subsets

and assign to different processors
● Count number of keys per bucket by

scanning g bits every pass (local operation)
● Move keys within each processor to

appropriate buckets (local operation)
● 1-to-all transpose buckets across processors

to find prefix sum (global operation)
● Send/receive keys between the processors

(global operation)

Parallel Radix Sort Bucket
Counts Transpose

B0 B1 B2 B3

P0 1 3 4 2

P1 3 6 1 0

P2 0 3 5 2

P3 1 2 2 5

P0 1 3 0 1

P1 3 6 3 2

P2 4 1 5 2

P3 2 0 2 5

Parallel Radix Sort Sending
Keys
● As the last step, processors communicate

keys according to global map
● Sending keys done according to map before

transpose
● Receiving done according to mapping after

transpose
● Keys are stored according to new mapping
● Continue until all passes are done
● At the end, collect keys from all and print by

master process

Test Results

Test Results

Test Results

Test Results

Test Results

Test Results

Test Results

Test Results

Conclusions
● As per results of all benchmarks, it is

apparent that parallel radix sort performance
suffers for small problem sizes. However, it
gets better as the problem size grows, while
performance of serial algorithm goes down

● Best speedup of 1.8 over the serial version
was achieved using 8-bit sampling, mpiexec
-n equal number of processor and having
large enough problem size

Conclusions
● Using 8-bit sampling per pass seems to work

best to achieve balance between local
processing and messaging overhead

● Minimizing number of buckets per processor
appears to be counterproductive due to
increase in payload size per message with
keys that needs to be communicated across

Conclusions
● Optimizations do little for the MPI

implementations, again due to overhead
created by messaging whereas serial
version benefits greatly from -O3
optimization

● Using mpiexec -n equal to number of
processors provides best results (common
sense)

● Performance only gets better with more
processors and bigger problem sizes

The End

Questions?

