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Why sorting?
● One of the most common problems 

in computer science
● Applicable to different domains in the 

field
● Variety of serial sorting algorithms 

available



Sorting evolution
● Emergence of multi-core hardware 

prompted serial algorithm 
parallelization, although with varying 
success

● Some algorithms are easier to 
parallelize than others

● New parallel sorting algorithms were 
developed



Parallel Sorting Basics
● Split unsorted sequence into equal size 

partitions and distribute across multiple 
processors

● Run serial sorting algorithm on each partition 
in parallel

● When each processor done sorting its own 
data, communicate results with other 
processors

● Repeat multiple times until the whole 
sequence becomes sorted



Performance Factors
● The size of input data set
● Number of processors (number of partial 

sequences partitioned across processors)
● Time spent sorting each individual sequence
● Time spent on inter-processor 

communication
● Previous research shows that for large 

problem sets communication becomes major 
perfomance bottleneck



Radix Sort
● Non-comparative
● Sorts data by evaluating one of group of 

digits at a time
● Not limited to integers
● MSD and LSD variety
● Time complexity O(k*n) for n keys each 

having k or fewer digits
● In many cases an improvement over 

comparative sort for large data sets



Radix Sort  Example
Unsorted sequence {170, 45, 75, 90, 802, 24, 2, 66}

LSD Pass 1
[0]  170  90
[1]
[2]  802  2
[3]
[4]  24
[5]  45    75
[6]  66

Continue until all digits sorted ...



Radix Sort Implementation
● P - number of processors
● n - problem size (total number of keys)
● g - group of bits examined during each pass
● b - number of bits for a number (32-bit int)
● r - number of passes (b / g)
● B - number of buckets, 2^g



Radix Sort Implementation
● For each pass scan g consecutive bits from 

LSD
● Store keys in 2^g buckets according to g bits
● Count how many keys each bucket has
● Compute exclusive prefix sum for each 

bucket
● Assign starting address according to prefix 

sums
● Examine g bits to determine bucket and 

move key to that bucket



Parallel Radix Sort
● Similar to serial radix sort algorithm
● Big difference is that keys are stored across 

different processors
● Keys are moved across different processors
● Each processor can end up having varying 

key counts after each pass
● Given P processors and B buckets, each 

processor holds B / P buckets



Parallel Radix Sort 
Implementation
● Split initial problem set into multiple subsets 

and assign to different processors
● Count number of keys per bucket by 

scanning g bits every pass (local operation)
● Move keys within each processor to 

appropriate buckets (local operation)
● 1-to-all transpose buckets across processors 

to find prefix sum (global operation)
● Send/receive keys between the processors 

(global operation)



Parallel Radix Sort Bucket 
Counts Transpose

B0 B1 B2 B3

P0 1 3 4 2

P1 3 6 1 0

P2 0 3 5 2

P3 1 2 2 5

P0 1 3 0 1

P1 3 6 3 2

P2 4 1 5 2

P3 2 0 2 5



Parallel Radix Sort Sending 
Keys
● As the last step, processors communicate 

keys according to global map
● Sending keys done according to map before 

transpose
● Receiving done according to mapping after 

transpose
● Keys are stored according to new mapping
● Continue until all passes are done
● At the end, collect keys from all and print by 

master process



Test Results
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Conclusions
● As per results of all benchmarks, it is 

apparent that parallel radix sort performance 
suffers for small problem sizes.  However, it 
gets better as the problem size grows, while 
performance of serial algorithm goes down

● Best speedup of 1.8 over the serial version 
was achieved using 8-bit sampling, mpiexec 
-n equal number of processor and having 
large enough problem size



Conclusions
● Using 8-bit sampling per pass seems to work 

best to achieve balance between local 
processing and messaging overhead

● Minimizing number of buckets per processor 
appears to be counterproductive due to 
increase in payload size per message with 
keys that needs to be communicated across



Conclusions
● Optimizations do little for the MPI 

implementations, again due to overhead 
created  by messaging whereas serial 
version benefits greatly from -O3 
optimization

● Using mpiexec -n equal to number of 
processors provides best results (common 
sense)

● Performance only gets better with more 
processors and bigger problem sizes



The End

Questions?


