
High Performance Scientific Computing
Yue Zhang
Dec,21 2012

Final Project Report: Seam Carving
! The topic of project is Horizontal Seam Carving. This is a program can resize the
width of image without losing important data or causing distortion. Seam Carving is
invented by Shai Avidan and Ariel Shamir from Mitsubishi Electric Research
Laboratories (MERL), and developed by many programmers around the world. The
coder’s main source is Avidan and Shamir’s paper: Seam carving for content-aware
image resizing1 and the Seam Carving page on 2. The main purpose of this program is
to resize wide image to a proper narrower image. After reducing the width of picture, the
generated picture should delete the unimportant part of the image and keep the shape
and color of the most important component, like human, building, animal in the graph.
The interval of image width is [128, 8192]. The interval of image height is [4,1024].
Since the program is used for wide image, wider image is preferred. The lower bound of
width is based on the work group size, which will effect the efficiency of the program.
The upper bound of the width is decide by the time consuming: if it is larger than the
upper bound, then the program can took a long time to finish the work. The lower bound
is 4 because less than that there will be no dynamic seam calculation and the program
becomes meaningless. Since the program works with wide image, height greater than
1024 can also cause a long time to process. So the upper bound of height is decided
based on the efficiency of the program.
! There are some OpenCV, Java, and OpenGL codes doing Seam Carving on
Internet. There are also programs available to do similar image-resizing. This program
does not consult those codes or programs because it is based on C language and
OpenCl language, using paralleling computing. The expectation for this program is to
use GPU doing parallel computing to do seam carving as quickly as possible. The step
to calculate seams is hard to parallel since each row of the image matrix depends on
the former row. So it is hard to parallel this dynamic programming part on the whole
matrix. Thus, this part is also the one cost most time.

Here are some results of efficiency. It is calculated by x = width*height*delete_seam/
processing time.

31452460.168107 of pixel/s, generate size 2000x1078 to 1000x1078
28490629.925246 of pixel/s, generate size 4288x1429 to 3000x1429
32824069.328321 of pixel/s, generate size 4288x1429 to 2000x1429
38585203.248761 of pixel/s, generate size 4288x1429 to 1000x1429

! 38102112.171293 of pixel/s, generate size 5992x624 to 2000x624
! 43222954.303436 of pixel/s, generate size 5992x624 to 1000x624
As the program shrinks of the width more and more, the efficiency increases since the
matrix becomes smaller as deleting the seams. As the width, and the height increase, it

1 http://dl.acm.org/citation.cfm?id=1276390

2 http://en.wikipedia.org/wiki/Seam_carving

http://dl.acm.org/citation.cfm?id=1276390
http://dl.acm.org/citation.cfm?id=1276390
http://en.wikipedia.org/wiki/Seam_carving
http://en.wikipedia.org/wiki/Seam_carving

should cost more time to delete one seam and efficiency should decrease. However, in
fact, to delete same number of seam, as image increase the efficiency increases. Since
applying parallel computing on GPU, the increase of size does not cause a lot change in
efficiency.

! In CPU part, the program first imports image data and new width. Then it
calculates grayscale image by using the formula gray=0.299r+0.587g+0.114b, where
r,g,b are red, green and blue pixel data. The CPU then sets context on GPU, builds
queue, load kernels, allocates and transfers those data to GPU. In GPU, the kernels are
used to calculate the gradient of each pixel in the image, calculate the seam energy,
find the seam with the lowest energy, find the index of this seam in each row, and delete
the seam. When calculating the gradient of each pixel, the program uses the grayscale
image, and calculates gradient along x and y axis. The program parallels the computing
on the whole matrix with group size of 128. In the next step, each time the kernel
imports one row from top and one row from bottom in the gradient matrix. Then it
calculates seam energy by applying dynamic programming, finding the shortest path
from top to middle and from bottom to middle at the same time. In this kernel, the work
group size is 128. In the informal version of the program, the coder tried to use local
memory, imported the data and processes them. However, the coder found it did not
improve the speed and slowed the program. So the coder edited it only used private
and global data and it worked better. After the dynamic programming part, there are
other kernels to deal with the middle row (or 2 middle rows if height is even), and
generate the final seam energy for each seam. Then the next kernel finds the lowest
seam, traces it back to find the index of this seam in each row, and saves the index.
Then, the next kernel works on deleting seam will delete the seam by setting each row
as one work group, deleting the seam by moving forward each pixel after the seam’s
row index by one. All those kernels loop to work until all seams needed to deleted are
removed from the image. Then the last kernel will transfer the image data to the new
image. Finally in the CPU, the program will import the new image data and produce this
new image named “sc.ppm” with the new width. Then program will free all the memory
used and end.

Instructions:
!
Please go to Forge3 to download the data.
First, convert your image to .ppm file and put it in the same folder as the code.
In terminal, type “make seamcarving” and click return.
Then type “./seamcarving image-name.ppm new_width” and click return.
If the new width is longer than the original one the program will abort.
Then choose GPU for the program and it will started to work. The screen will display
how many seams left to deleted. Finally it will display the efficiency of resizing the
image.

3 http://forge.tiker.net/p/hpc12-fp-yz1386/source/tree/master/

http://forge.tiker.net/p/hpc12-fp-yz1386/
http://forge.tiker.net/p/hpc12-fp-yz1386/

Use “display sc.ppm” and the new image will be displayed. Or find “sc.ppm” in the folder
and open it directly.

Example:

In the terminal, first type “make seamcarving”. Then click return.
Type “./seamcarving fatcat.ppm 600” and click return.
Choose GPU like AMD and click return.
Type “display sc.ppm” and click return (or open the folder and click to open the image
sc.ppm).

