

Seam Carving Yue Zhang

Wednesday, December 19, 12

Before start...

(3745X600)

(3390X893)

(2000x1078)

Any solution to adjust size but no distortion?

***Seam Carving!**

Seam Carving?

* Algorithm of image resizing

- * known as content-aware image resizing, contentaware scaling, liquid resizing, or liquid rescaling...
- * Shai Avidan and Ariel Shamir from MERL (Mitsubishi Electric Research Laboratories)

What is Seam Carving?

* Resize image without losing important part

* Display images without distortion on various media

How to do it?

- * Establish seams (path of energy)
- Removes seams to reduce image size
- * My Project:
- * --Use GPU and OpenCL to do Horizontal Seam Carving
- * --Based on the dependency, use different work group-size to do parallel computing

Project:Seam Carving * In CPU

* --Import image and new size
* --Calculate "Grayscale Image"
* (gray = 0.299r + 0.587g + 0.114b)
* --Preparation for kernels

- * --Calculate gradient of each pixel (HPC on whole matrix)
- * --Calculate Seam(Dynamic Programming)
- # --Find Seam with lowest Energy
- # --Delete it!

Kernel to calculate Seam

* CPU

***** GPU

4 4	5 5	1	1	3	3	7	7	6	6	4	4	5	5	1	1	3	3	7	7	6	6	
6 10	4 5	7	8	8	9	5	8	2	9	6	10	4	5	7	8	8	9	5	8	2	9	
2 7	8 13	3	8	6	14	4	12	1	9	2	7	8	13	3	8	6	14	4	12	1	9	
9	2	4		5		8		7		9	10	2	3	4	6	5	7	8	10	7	10	
1	9	5		2		3		6		1	1	9	9	5	5	2	2	3	3	6	6	

Find Seam and Delete

Wednesday, December 19, 12

Result

- * Speed: Depend on the width and height, also the new width of the graph
- * ex.12 seconds to shrink 2000X1078 image to 1000x1078 (on Bowery)
- * Seam Calculation cost most time, then the gradient(energy) calculation part

Application!

Wednesday, December 19, 12

Wednesday, December 19, 12

Further Study

* Weakness of Seam Carving

* Possible Improvements

IF YOU SHRIKN TOO MUCH...

KEEP IMPORTANT DATA NOT EQUAL TO KEEP IMPORTANT DATA UNCHANGE

Weaknesses

- # --What's the "best shrink size"?
- # -- Energy Function(Calculate Gradient)
- # --Boundary Problem
- * --Only depend on seam value
- * --Speed limitation

Possible Improvements

- # --Better energy function
- * --Deal with boundary more accurately
- # --Find other variable to adjust size
- * --Use other HPC tools to construct the program

Any Questions?

"WHO IS THE REAL ME?"

Thank you!