High-Performance Scientific Computing Lecture 1: Intro

MATH-GA 2011 / CSCI-GA 2945 · September 5, 2012

Today

About this class

HPC: A look around

A taste of what's to come

Extra stuff

Outline

About this class

HPC: A look around

A taste of what's to come

Extra stuff

Course Goal

Slow code goes in.

Speedy code goes out.

 Took about 30 days on a single PC.

- Took about 30 days on a single PC.
- Took about a day on a GPU.

- Took about 30 days on a single PC.
- Took about a day on a GPU.

That's still pretty crude-looking.

- Took about 30 days on a single PC.
- Took about a day on a GPU.

That's still pretty crude-looking.

- Took about 30 days on a single PC.
- Took about a day on a GPU.

That's still pretty crude-looking.

Suppose I'd like to double the resolution. (i.e. cut the mesh width h in half.)

Had K elements. Now?

- Took about 30 days on a single PC.
- Took about a day on a GPU.

That's still pretty crude-looking.

- Had K elements. Now?
- · Anything else?

- Took about 30 days on a single PC.
- Took about a day on a GPU.

That's still pretty crude-looking.

- Had K elements. Now?
- · Anything else?
- 16× the cost!

Realistic (high-fidelity) problems are big.

- Took about 30 days on a single PC.
- Took about a day on a GPU.

That's still pretty crude-looking.

- Had K elements. Now?
- Anything else?
- 16× the cost!

Realistic (high-fidelity) problems are big.

→ You'll need a bigger hammer.

- Took about 30 days on a single PC.
- Took about a day on a GPU.

That's still pretty crude-looking.

- Had K elements. Now?
- · Anything else?
- 16× the cost!

Realistic (high-fidelity) problems are big.

 \rightarrow You'll need a bigger hammer.

You'll need to know how to use the bigger hammer.

- Took about 30 days on a single PC.
- Took about a day on a GPU.

That's still pretty crude-looking.

- Had K elements.Now?
- Anything else?
- 16× the cost!

Course Outline

Part 1: Do (\sim 4)

- Write, run programs (C)
- Use tools (make, git, gdb)
- OpenMP, MPI, OpenCL
- Correctness in each

Part 2: Understand (\sim 3)

- Measure and understand performance
- Basic machine architecture
- CPU machine model
- GPU machine model

Part 3: Refine (~ 3)

- Advanced tools & languages
- Work partitioning
- Common patterns
- Load balancing

Part 4: Apply

- Find a project (start looking now!)
- Pitch it to us (5 min)
- Apply what you've learned
- Present your work (2)

Sign-up sheet

• Home department

- Home department
- Degree

- Home department
- Degree
- Longest program ever written?

- Home department
- Degree
- Longest program ever written?
 - in C?

- Home department
- Degree
- Longest program ever written?
 - in C?
- Parallel?

- Home department
- Degree
- Longest program ever written?
 - in C?
- Parallel?
- Already have a project?

Class web page

bit.ly/hpc12

Class web page

bit.ly/hpc12

Posted: Virtual machine image (instructions in HW1)

Posted: Homework set 1 (C warm-up, git, mechanics)

Due next week

Listserv

hpc12@tiker.net

Book 1

Book 1

All books accessible from NYU network. Links on class web page.

Books 2-4

Books 2-4

Books 2-4

Grading

- 60% Weekly homework
- 40% Final project

Smile! You're on camera

Lecture video will be posted soon after each class.

Outline

About this class

HPC: A look around

A taste of what's to come

Extra stuff

Key Realization

My program is taking too long.

Key Realization

My program is taking too long.

Maybe it'll get faster if I wait long enough?

Moore's law

About this class HPC: A look around A taste of what's to come Extra stuff

Moore's law

About this class HPC: A look around A taste of what's to come Extra stuff

$$\frac{\mathsf{Work}}{s} = \mathsf{Clock} \; \mathsf{Frequency} \; \times \; \mathsf{Work}/\mathsf{Clock}$$

$$\frac{\mathsf{Work}}{s} = \mathsf{Clock} \; \mathsf{Frequency} \; \times \; \mathsf{Work}/\mathsf{Clock}$$

Dennard scaling of MOSFETs

Parameter	Factor
Dimension	$1/\kappa$
Voltage	$1/\kappa$
Current	$1/\kappa$
Capacitance	$1/\kappa$
Delay Time	$1/\kappa$
Power dissipation/circuit	$1/\kappa^2$
Power density	1

[Dennard et al. '74, via Bohr '07]

Dennard scaling of MOSFETs

Parameter	Factor
Dimension	$1/\kappa$
Voltage	$1/\kappa$
Current	$1/\kappa$
Capacitance	$1/\kappa$
Delay Time	$1/\kappa$
Power dissipation/circuit	$1/\kappa^2$
Power density	1

[Dennard et al. '74, via Bohr '07]

 ${\sf Frequency} = {\sf Delay} \ {\sf time}^{-1}$

Dennard scaling of MOSFETs

Parameter	Factor
Dimension	$1/\kappa$
Voltage	$1/\kappa$
Current	$1/\kappa$
Capacitance	$1/\kappa$
Delay Time	$1/\kappa$
Power dissipation/circuit	$1/\kappa^2$
Power density	1

[Dennard et

Frequency = Delay $time^{-1}$

'New' problem at small scale: Sub-threshold leakage (due to low voltage, small structure)

MOSFETs

Intel Corporation

MOSFETs

About this class HPC: A look around A taste of what's to come Extra stuff

Robert Dennard

$$\frac{\mathsf{Work}}{\mathsf{s}} = \mathsf{Clock} \; \mathsf{Frequency} \; \times \; \mathsf{Work}/\mathsf{Clock}$$

$$\frac{\text{Work}}{s} = \frac{\text{Clock Frequency}}{s} \times \frac{\text{Work}}{\text{Clock}}$$

$$\frac{\text{Work}}{s} = \frac{\text{Clock Frequency}}{\text{Clock}} \times \frac{\text{Work}}{\text{Clock}}$$

Instructions per clock: Intel

CPU	IPC	Year
Pentium 1	1.1	1993
Pentium MMX	1.2	1996
Pentium 3	1.9	1999
Pentium 4 (Willamette)	1.5	2003
Pentium 4 (Northwood)	1.6	2003
Pentium 4 (Prescott)	1.8	2003
Pentium 4 (Gallatin)	1.9	2003
Pentium D	2	2005
Pentium M	2.5	2003
Core 2	3	2006

Charlie Brej, http://brej.org/blog/?p=15

Instructions per clock: AMD

CPU	IPC	Year
K6 II	1.1	1998
K6 III	1.3	1999
Athlon B	1.9	1999
Athlon XP	2	2001
Athlon 64	2.3	2003
Athlon 64 X2	2.5	2005

Charlie Brej, http://brej.org/blog/?p=15

Instructions per clock: AMD

CPU	IPC	Year
K6 II	1.1	1998
K6 III	1.3	1999
Athlon B	1.9	1999
Athlon XP	2	2001
Athlon 64	2.3	2003
Athlon 64 X2	2.5	2005

A failure of the programming model!

Charlie Brej, http://brej.org/b

Processor Evolution

Processor Evolution

High-performance computing is parallel computing. (...)

Parallel programming is . . .

- inevitable (if you'd like maximal throughput)
- hard

Problem: People don't think 'that way'.

"Automatic parallelization" has largely been a failure.

 \rightarrow People have to be taught to think that way.

High-performance computing is parallel computing. (...)

Parallel programming is ...

- inevitable (if you'd like maximal throughput)
- hard

Problem: People don't think 'that way'.

"Automatic parallelization" has largely been a failure.

 \rightarrow People have to be taught to think that way. :)

High-performance computing is parallel computing. (...)

Parallel programming is ...

- inevitable (if you'd like maximal throughput)
- hard

Problem: People don't think 'that way'.

"Automatic parallelization" has largely been a failure.

 \rightarrow People have to be taught to think that way.

High-performance computing is parallel computing. (...)

Parallel programming is . . .

- inevitable (if you'd like maximal throughput)
- hard

Problem: People don't think 'that w

"Automatic parallelization" ha

 \rightarrow People have to be taught t

Bad news: Parallelism might not even be our worst problem.

Don't just need to compute, also need to transmit information (to memory, say)

More bad news from Dr. Dennard

Parameter	Factor
Dimension	$1/\kappa$
Line Resistance	κ
Voltage drop	κ
Response time	1
Current density	κ

[Dennard et al. '74, via Bohr '07]

- The above scaling law is for on-chip interconnects.
- Off-chip: Similar consideration.
 Current ~ Power vs. response time

More bad news from Dr. Dennard

Parameter	Factor
Dimension	$1/\kappa$
Line Resistance	κ
Voltage drop	κ
Response time	1
Current density	κ

[Dennard et a

- The above scaling law is
- Off-chip: Similar consider Current ~ Power vs. re

Getting information from

- processor to memory
- one computer to the next

is

- slow (in latency)
- power-hungry

Summary

Main problems for this class:

- 1. Express parallelism
- 2. Express communication/synchronization
- Analyze, understand run time Both theoretically and practically (by measurement)
- 1 and 2 are language issues!

Summary

Main problems for this class:

- 1. Express parallelism
- 2. Express communication/synchronization
- Analyze, understand run time Both theoretically and practically (by measurement)
- 1 and 2 are language issues!

A little bit of terminology:

- Speedup, Efficiency, Scaling
- "Amdahl's law":
 Speed up 10% of your program by a factor of 10?

Parallelism as a Language Question

Parallelism as a Language Question

Parallelism as a Language Question

Outline

About this class

HPC: A look around

A taste of what's to come

Extra stuff

Demo time!

Outline

About this class

HPC: A look around

A taste of what's to come

Extra stuff

HPC as a Spectator Sport

Rank ¢	Rmax Rpeak [‡] (Pflops)	Name ¢	Computer design Processor type, interconnect	Vendor ¢	Site ¢	Operating \$
1	16.324 20.132	Sequoia	Blue Gene/Q PowerPC A2, Custom	IBM	Lawrence Livermore National Laboratory United States, 2011	Linux (RHEL and CNL)
2	10.510 11.280	K computer	RIKEN SPARC64 VIIIfx, Tofu	Fujitsu	RIKEN Japan, 2011	Linux
3	8.162 10.066	Mira	Blue Gene/Q PowerPC A2, Custom	IBM	Argonne National Laboratory United States, 2012	Linux
4	2.897 3.185	SuperMUC	iDataPlex DX360M4 Xeon E5–2680, Infiniband	IBM	Leibniz-Rechenzentrum Germany, 2012	Linux
5	2.566 4.701	Tianhe-1A	NUDT YH Cluster Xeon 5670 + Tesla 2050, Arch ^[4]	NUDT	National Supercomputing Center of Tianjin China, 2010	Linux
6	1.941 2.627	Jaguar	Cray XT5 Opteron 6274 + Tesla 2090, Cray Gemini	Cray	Oak Ridge National Laboratory United States, 2009	Linux (CLE)
7	1.725 2.097	Fermi	Blue Gene/Q PowerPC A2, Custom	IBM	CINECA Italy, 2012	Linux
8	1.380 1.677	JuQUEEN	Blue Gene/Q PowerPC A2, Custom	IBM	Forschungszentrum Jülich Germany, 2012	Linux
9	1.359 1.667	Curie	Bullx B510 Xeon E5–2680, Infiniband	Bull	TGCC at CEA, and GENCI France, 2012	Linux (bullx)
10	1.271 2.984	Nebulae	TC3600 Blade Xeon 5650 + Tesla 2050, InfiniBand	Dawning	National Supercomputing Center in Shenzhen NSCS China, 2010	Linux

http://top500.org

HPC as a Spectator Sport

Rank ¢	Rmax Rpeak ^{\$} (Pflops)	Name ¢	Computer design Processor type, \$ interconnect	Vendor ¢	Site ¢ Country, year	Operating ¢
1	16.324 20.132	Sequoia	Blue Gene/Q PowerPC A2, Custom	IBM	Lawrence Livermore National Laboratory United States, 2011	Linux (RHEL and CNL)
2	10.510 11.280	K computer	RIKEN SPARC64 VIIIfx, Tofu	Fujitsu	RIKEN Japan, 2011	Linux
3	8.162 10.066	Mira	Blue Gene/Q PowerPC A2, Custom	IBM	Argonne National Laboratory United States, 2012	Linux
4	2.897 3.185	SuperMUC	iDataPlex DX360M4 Xeon E5–2680, Infiniband	IBM	Leibniz-Rechenzentrum Germany, 2012	Linux
5	2.566 4.701	Tianhe-1A	NUDT YH Cluster Xeon 5670 + Tesla 2050, Arch ^[4]	NUDT	National Supercomputing Center of Tianjin China, 2010	Linux
6	1.941 2.627	Jaguar	Cray XT5 Opteron 6274 + Tesla 2090, Cray Gemini	Cray	Oak Ridge National Laboratory United States, 2009	Linux (CLE)
7	1.725 2.097	Fermi	Blue Gene/Q PowerPC A2, Custom	IBM	CINECA Italy, 2012	Linux
8	1.380 1.677	JuQUEEN	Blue Gene/Q PowerPC A2, Custom	IBM	Forschungszentrum Jülich Germany, 2012	Linux
9	1.359 1.667	Curie	Bullx B510 Xeon E5–2680, Infiniband	Bull	TGCC at CEA, and GENCI France, 2012	Linux (bullx)
10	1.271 2.984	Nebulae	TC3600 Blade Xeon 5650 + T InfiniBand		National Supercomputing Center in	

Know your gigas, teras, petas, and exas.

http://top500.org

HPC as a Spectator Sport

http://top500.org

Questions?

?

Image Credits

Notebook: sxc.hu/abeall

• Question mark: sxc.hu/svilen001

• Camera: sxc.hu/Kolobsek

• Gordon Moore: Wikipedia