
High-Performance Scientific Computing
Lecture 12: GPU Performance, Applications

MATH-GA 2011 / CSCI-GA 2945 · November 28, 2012

GPU performance MPI performance Parallel Patterns

Today

GPU performance

MPI performance

Parallel Patterns

GPU performance MPI performance Parallel Patterns

Outline

GPU performance
Understanding GPUs
GPUs and Memory
Summary

MPI performance

Parallel Patterns

GPU performance MPI performance Parallel Patterns

Outline

GPU performance
Understanding GPUs
GPUs and Memory
Summary

MPI performance

Parallel Patterns

GPU performance MPI performance Parallel Patterns

Recap

• SIMD performance impact?

• How can GPU code deal with latency?

• Difference: # FPUs / # scheduling slots?

GPU performance MPI performance Parallel Patterns

Recap

• SIMD performance impact?

• How can GPU code deal with latency?

• Difference: # FPUs / # scheduling slots?

GPU performance MPI performance Parallel Patterns

Recap

• SIMD performance impact?

• How can GPU code deal with latency?

• Difference: # FPUs / # scheduling slots?

GPU performance MPI performance Parallel Patterns

Comparing architectures

Nvidia Nvidia Nvidia AMD Units
GF100 GF104 GK104 GCN Units

Warps/core 48 48 64 40
Warp Size 32 32 32 64 W.Item
SP FPUs/core 32 48 192 64
Cores 15 7 8 32

Core clock 1400 1300 823 925 MHz

Reg File 128 128 256 256 kiB
Lmem/core 64 64 64 64 kiB
Lmem BW/core 64 64 128 128 B/clock

GMem Bus 384 256 256 384 Bits
GMem Clock 3696 3600 6008 5500 MHz

David Kanter / Realworldtech.com

What are the main limits for programs?

What happens if you exceed them?

GPU performance MPI performance Parallel Patterns

Comparing architectures

Nvidia Nvidia Nvidia AMD Units
GF100 GF104 GK104 GCN Units

Warps/core 48 48 64 40
Warp Size 32 32 32 64 W.Item
SP FPUs/core 32 48 192 64
Cores 15 7 8 32

Core clock 1400 1300 823 925 MHz

Reg File 128 128 256 256 kiB
Lmem/core 64 64 64 64 kiB
Lmem BW/core 64 64 128 128 B/clock

GMem Bus 384 256 256 384 Bits
GMem Clock 3696 3600 6008 5500 MHz

David Kanter / Realworldtech.com

What are the main limits for programs?

What happens if you exceed them?

GPU performance MPI performance Parallel Patterns

Architecture

Occupancy calculator

GPU performance MPI performance Parallel Patterns

Performance in three sentences

Flops are cheap
Bandwidth is money

Latency is physics

[M. Hoemmen]

GPU performance MPI performance Parallel Patterns

Outline

GPU performance
Understanding GPUs
GPUs and Memory
Summary

MPI performance

Parallel Patterns

GPU performance MPI performance Parallel Patterns

Parallel Memories: Different Approaches

Problem
Digital memories have only one data bus.

So how can multiple threads read multiple data items from
memory simultaneously?

Solutions: Parallel Access to Memory

• Split a really wide data bus, but have only one address bus

• Have many “small memories” (“banks”) with separate address
busses. Pick bank by LSB of address.

GPU performance MPI performance Parallel Patterns

Parallel Memories: Different Approaches

Problem
Digital memories have only one data bus.

So how can multiple threads read multiple data items from
memory simultaneously?

Solutions: Parallel Access to Memory

• Split a really wide data bus, but have only one address bus

• Have many “small memories” (“banks”) with separate address
busses. Pick bank by LSB of address.

GPU performance MPI performance Parallel Patterns

Parallel Memories: Different Approaches

Problem
Digital memories have only one data bus.

So how can multiple threads read multiple data items from
memory simultaneously?

Solutions: Parallel Access to Memory

• Split a really wide data bus, but have only one address bus

• Have many “small memories” (“banks”) with separate address
busses. Pick bank by LSB of address.

GPU performance MPI performance Parallel Patterns

Parallel Memories: Different Approaches

Problem
Digital memories have only one data bus.

So how can multiple threads read multiple data items from
memory simultaneously?

Solutions: Parallel Access to Memory

• Split a really wide data bus, but have only one address bus

• Have many “small memories” (“banks”) with separate address
busses. Pick bank by LSB of address.

GPU performance MPI performance Parallel Patterns

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

GPU performance MPI performance Parallel Patterns

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

GPU performance MPI performance Parallel Patterns

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)

Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

GPU performance MPI performance Parallel Patterns

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)

Bad: global variable[5+get global id(0)]

(Two transactions)

Bad: global variable[2*get global id(0)]

(Two transactions)

GPU performance MPI performance Parallel Patterns

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

GPU performance MPI performance Parallel Patterns

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)

GPU performance MPI performance Parallel Patterns

Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)

Bad: global variable[2*get global id(0)]

(Two transactions)

GPU performance MPI performance Parallel Patterns

GPU Global Memory

GPU global access patterns
demo

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20 · · ·

1 5 9 13 17 21 · · ·

2 6 10 14 18 22 · · ·

3 7 11 15 19 23 · · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)

Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)

Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)

OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)

OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)

OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)

OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)

Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)

Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)

OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)

OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.

GPU performance MPI performance Parallel Patterns

GPU local Memory

GPU local access patterns
demo

What does this mean for 2D arrays
in local memory? (E.g. matrix trans-
pose?)

GPU performance MPI performance Parallel Patterns

GPU local Memory

GPU local access patterns
demo

What does this mean for 2D arrays
in local memory? (E.g. matrix trans-
pose?)

GPU performance MPI performance Parallel Patterns

GPU local Memory

GPU local access patterns
demo

What does this mean for 2D arrays
in local memory? (E.g. matrix trans-
pose?)

What does this mean for doubles in
local memory?

GPU performance MPI performance Parallel Patterns

Faster transfers Host ↔ GPU

How about host ↔ device transfers?

• If talking to CPU: Unnecessary

CL MEM ALLOC HOST PTR

• If talking to GPU:

• Want asynchronous transfer
• Want overlapping transfer

What about paging?

CL MEM ALLOC HOST PTR

(‘pinned’ memory–Demo)

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2

Important: Two different mechanisms
at work!

GPU performance MPI performance Parallel Patterns

Faster transfers Host ↔ GPU

How about host ↔ device transfers?

• If talking to CPU: Unnecessary
CL MEM ALLOC HOST PTR

• If talking to GPU:

• Want asynchronous transfer
• Want overlapping transfer

What about paging?

CL MEM ALLOC HOST PTR

(‘pinned’ memory–Demo)

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2

Important: Two different mechanisms
at work!

GPU performance MPI performance Parallel Patterns

Faster transfers Host ↔ GPU

How about host ↔ device transfers?

• If talking to CPU: Unnecessary
CL MEM ALLOC HOST PTR

• If talking to GPU:

• Want asynchronous transfer
• Want overlapping transfer

What about paging?
CL MEM ALLOC HOST PTR

(‘pinned’ memory–Demo)

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2

Important: Two different mechanisms
at work!

GPU performance MPI performance Parallel Patterns

Faster transfers Host ↔ GPU

How about host ↔ device transfers?

• If talking to CPU: Unnecessary
CL MEM ALLOC HOST PTR

• If talking to GPU:

• Want asynchronous transfer
• Want overlapping transfer

What about paging?
CL MEM ALLOC HOST PTR

(‘pinned’ memory–Demo)

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2

Important: Two different mechanisms
at work!

GPU performance MPI performance Parallel Patterns

Too little memory?

Efficient code organization for out-of-core
calculations?

Assume: ←, → transfers, computation all proceed independently.

“Double buffering”

Idea: Just keep everybody busy.

Q: Describe that in OpenCL without
synchronizing the host to the GPU.

GPU performance MPI performance Parallel Patterns

Too little memory?

Efficient code organization for out-of-core
calculations?

Assume: ←, → transfers, computation all proceed independently.

“Double buffering”

Idea: Just keep everybody busy.

Q: Describe that in OpenCL without
synchronizing the host to the GPU.

GPU performance MPI performance Parallel Patterns

Too little memory?

Efficient code organization for out-of-core
calculations?

Assume: ←, → transfers, computation all proceed independently.

“Double buffering”

Idea: Just keep everybody busy.

Q: Describe that in OpenCL without
synchronizing the host to the GPU.

GPU performance MPI performance Parallel Patterns

Entertainment: GPU Memory Zoo

Type Per Access Latency
private work item R/W 1 or 1000
local group R/W 2
global grid R/W 1000 Cached?
constant grid R/O 1-1000 Cached
imagend t grid R(/W) 1000 Spatially cached

GPU performance MPI performance Parallel Patterns

Entertainment: GPU Memory Zoo

Type Per Access Latency
private work item R/W 1 or 1000
local group R/W 2
global grid R/W 1000 Cached?
constant grid R/O 1-1000 Cached
imagend t grid R(/W) 1000 Spatially cached

GPU performance MPI performance Parallel Patterns

Outline

GPU performance
Understanding GPUs
GPUs and Memory
Summary

MPI performance

Parallel Patterns

GPU performance MPI performance Parallel Patterns

GPU performance summary

• Latency, latency, latency!
• Various forms: Memory, branches, computation
• All need to be hidden

• Bandwidth: usually fixable

• Watch your memory access patterns
• Local mem is somewhat more forgiving
• . . . and lower latency, higher BW

GPU performance MPI performance Parallel Patterns

Demo

GPU profiler demo

GPU performance MPI performance Parallel Patterns

Outline

GPU performance

MPI performance

Parallel Patterns

GPU performance MPI performance Parallel Patterns

MPI

MPI performance demo

GPU performance MPI performance Parallel Patterns

</2 >

Understanding Computational Cost

GPU performance MPI performance Parallel Patterns

<3 >

Concepts, Patterns and Recipes

GPU performance MPI performance Parallel Patterns

Outline

GPU performance

MPI performance

Parallel Patterns
Embarrassingly Parallel
Partition

GPU performance MPI performance Parallel Patterns

Patterns: Overview

Parallel Programming:

• To what problems does it apply?

• How?
• How big of a headache?

• What mechanism is suitable?

Organize discussion by patterns of Dependencies.

Will move to more of a discussion style

GPU performance MPI performance Parallel Patterns

Patterns: Overview

Parallel Programming:

• To what problems does it apply?

• How?
• How big of a headache?

• What mechanism is suitable?

Organize discussion by patterns of Dependencies.

Will move to more of a discussion style

GPU performance MPI performance Parallel Patterns

Outline

GPU performance

MPI performance

Parallel Patterns
Embarrassingly Parallel
Partition

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

• xi : inputs

• yi : outputs

• fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

• modifies non-local state, or

• has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

• Lisp/Python function map

• C++ STL std::transform

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

• xi : inputs

• yi : outputs

• fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

• modifies non-local state, or

• has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

• Lisp/Python function map

• C++ STL std::transform

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

• xi : inputs

• yi : outputs

• fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

• modifies non-local state, or

• has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

• Lisp/Python function map

• C++ STL std::transform

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel

yi = fi(xi)
where i ∈ {1, . . . ,N}.

Notation: (also for rest of this lecture)

• xi : inputs

• yi : outputs

• fi : (pure) functions (i.e. no side effects)

When does a function have a “side effect”?

In addition to producing a value, it

• modifies non-local state, or

• has an observable interaction with the
outside world.

Often: f1 = · · · = fN . Then

• Lisp/Python function map

• C++ STL std::transform

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel: Graph Representation

x0

y0

f0

x1

y1

f1

x2

y2

f2

x3

y3

f3

x4

y4

f4

x5

y5

f5

x6

y6

f6

x7

y7

f7

x8

y8

f8

Trivial? Often: no.

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel: Graph Representation

x0

y0

f0

x1

y1

f1

x2

y2

f2

x3

y3

f3

x4

y4

f4

x5

y5

f5

x6

y6

f6

x7

y7

f7

x8

y8

f8

Trivial? Often: no.

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel: Examples

Surprisingly useful:

• Element-wise linear algebra:
Addition, scalar multiplication (not
inner product)

• Image Processing: Shift, rotate,
clip, scale, . . .

• Monte Carlo simulation

• (Brute-force) Optimization

• Random Number Generation

• Encryption, Compression
(after blocking)

But: Still needs a minimum of
coordination. How can that be
achieved?

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel: Examples

Surprisingly useful:

• Element-wise linear algebra:
Addition, scalar multiplication (not
inner product)

• Image Processing: Shift, rotate,
clip, scale, . . .

• Monte Carlo simulation

• (Brute-force) Optimization

• Random Number Generation

• Encryption, Compression
(after blocking) But: Still needs a minimum of

coordination. How can that be
achieved?

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel: Issues

• Process Creation:
Dynamic/Static?

• MPI 2 supports dynamic process
creation

• Job Assignment (‘Scheduling’):
Dynamic/Static?

• Operations/data light- or
heavy-weight?

• Variable-size data?

• Load Balancing:
• Here: easy

Can you think of a load
balancing recipe?

GPU performance MPI performance Parallel Patterns

Embarrassingly Parallel: Issues

• Process Creation:
Dynamic/Static?

• MPI 2 supports dynamic process
creation

• Job Assignment (‘Scheduling’):
Dynamic/Static?

• Operations/data light- or
heavy-weight?

• Variable-size data?

• Load Balancing:
• Here: easy

Can you think of a load
balancing recipe?

GPU performance MPI performance Parallel Patterns

Mother-Child Parallelism
Mother-Child parallelism:

M
ot

h
er

0 1 2 3 4

C
h

ild
re

n

Send initial data

Collect results

(formerly called “Master-Slave”)
GPU performance MPI performance Parallel Patterns

Outline

GPU performance

MPI performance

Parallel Patterns
Embarrassingly Parallel
Partition

GPU performance MPI performance Parallel Patterns

Partition

yi = fi(xi−1, xi , xi+1)

where i ∈ {1, . . . ,N}.

Includes straightforward generalizations to dependencies on a larger
(but not O(P)-sized!) set of neighbor inputs.

Point: Processor i owns xi . (“owns” = is “responsible for
updating”)

GPU performance MPI performance Parallel Patterns

Partition

yi = fi(xi−1, xi , xi+1)

where i ∈ {1, . . . ,N}.

Includes straightforward generalizations to dependencies on a larger
(but not O(P)-sized!) set of neighbor inputs.

Point: Processor i owns xi . (“owns” = is “responsible for
updating”)

GPU performance MPI performance Parallel Patterns

Partition

yi = fi(xi−1, xi , xi+1)

where i ∈ {1, . . . ,N}.

Includes straightforward generalizations to dependencies on a larger
(but not O(P)-sized!) set of neighbor inputs.

Point: Processor i owns xi . (“owns” = is “responsible for
updating”)

GPU performance MPI performance Parallel Patterns

Partition: Graph

x0 x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

GPU performance MPI performance Parallel Patterns

Partitioning for neighbor communication

How can I chop up a domain?

GPU performance MPI performance Parallel Patterns

Partitioning for neighbor communication

How can I chop up a domain?

GPU performance MPI performance Parallel Patterns

Questions?

?

GPU performance MPI performance Parallel Patterns

Image Credits

• Field: sxc.hu/mzacha

GPU performance MPI performance Parallel Patterns

	GPU performance
	Understanding GPUs
	GPUs and Memory
	Summary

	MPI performance
	Parallel Patterns
	Embarrassingly Parallel
	Partition

