High-Performance Scientific Computing
Lecture 13: Parallel Patterns

MATH-GA 2011 / CSCI-GA 2945 - December 5, 2012

Visualization Parallel Patterns

Today

Tool of the day: 3D Visualization

Parallel Patterns

Visualization Parallel Patterns

Bits and pieces

HW®6: soon

Dec 12: No class—good luck on finals!
Dec 177/187/19: Project presentations
e Will announce precise date, watch email

Project guidelines posted
Need help with project? Ask/come see us!

Class evaluations

Visualization Parallel Patterns

Tool of the day: 3D Visualization

Parallel Patterns

Visualization Parallel Patterns

3D vis demo time

Visualization Parallel Patterns

Visualization demo

Software links:
o libsilo (LLNL “WCI", BSD license)
e Vislt (LLNL “WCI", BSD license)
Alternative:
e Paraview (KitWare/LANL, BSD license)
o TecPlot ($%9)

Visualization Parallel Patterns

https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/visit/
http://paraview.org

Outline

Parallel Patterns

Partition
Obtaining partitions

Pipelines

Reduction

Map-Reduce

Scan

Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

Outline

Parallel Patterns

Partition
Obtaining partitions

Visualization Parallel Patterns

Partition

yi = fi(xi—1, Xj, Xj+1)

where i € {1,...,N}.

Visualization Parallel Patterns

Partition

yi = fi(xi—1, Xj, Xj+1)

where i € {1,...,N}.

Includes straightforward generalizations to dependencies on a larger
(but not O(P)-sized!) set of neighbor inputs.

Visualization Parallel Patterns

Partition

yi = fi(xi—1, Xj, Xj+1)

where i € {1,...,N}.

Includes straightforward generalizations to dependencies on a larger
(but not O(P)-sized!) set of neighbor inputs.

Point: Processor i owns x;. (“owns” = is “responsible for
updating”)

Visualization Parallel Patterns

Partition: Graph

Mapping to Mechanisms

e OpenMP?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?
e MPI: Larger than # ranks?

Visualization Parallel Patterns

Mapping to Mechanisms

OpenMP?

MPI?

MPI: Larger than # ranks?
GPU?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point

stencil”):
Un+1 — i(_4un+un +un .
ij h2 iJ i—1, i+1,

n n
+uij1+ i)

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point

stencil”):
n+1_i(_4n+n +n
Yij o = 78Tl iy
n n
+uij1+ i)
e Sequential

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

1
n+1 n n n
uivj - h2(4u’7] ui_l:j ui+17j

n n
+uij1+ i)

e Sequential
e OpenMP?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

1
n+1 n n n
uivj - h2(4u’7] ui_l:j ui+17j

n n
+uij1+ i)

e Sequential
e OpenMP?
e MPI?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

1
n+1 n n n
uivj - h2(4u’7] ui_l:j ui+17j

n n
+uij1+ i)

Sequential
OpenMP?

e MPI?

GPU — 2D?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

1
n+1 n n n
uivj - h2(4u’7] ui_l:j ui+17j

n n
+uij1+ i)

Sequential
OpenMP?

e MPI?

GPU — 2D?
GPU — 3D?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

1
n+1 n n n
uiv.j - h2(4u’7] ui_l:j ui+17j

n n
+uij1+ i)

Sequential
OpenMP?

e MPI?

GPU — 2D?
GPU — 3D?

What if there's geometry?

Visualization Parallel Patterns

Partition: Issues

e Same computation often repeated
many times

e As time steps in a simulation
e Until ‘convergence’

e — Synchronization?

e Main structures: Array (image,
grid), Graph (mesh)

e Performance impact of partition?

e Granularity?

e Only useful when the computation
is mainly local

e Load Balancing: Thorny issue
(next)

Visualization Parallel Patterns

Rendezvous Trick

e Assume an irregular
partition.
e Assume problem
components /i, j on unknown 0
partitions p;, p; need to
communicate.

e How can p; find p; (and vice

versa)? 0

Visualization Parallel Patterns

Rendezvous Trick

e Assume an irregular
partition.

e Assume problem
components /i, j on unknown
partitions p;, p; need to
communicate.

e How can p; find p; (and vice

versa)? 0
Communicate via a

third party, pr(; jy.-

For f: think ‘hash function’.

Visualization Parallel Patterns

Rendezvous Trick

e Assume an irregular
partition.
e Assume problem
components /i, j on unknown 0
partitions p;, p; need to
communicate. “I'min p;."

e How can p; find p; (and vice

versa)? 0
Communicate via a
third party, pr(; jy.-
For f: think ‘hash function’.

Visualization Parallel Patterns

Rendezvous Trick

e Assume an irregular
partition.

e Assume problem
components /i, j on unknown 0
partitions p;, p; need to
communicate.

Rzl

e How can p; find p; (and vice
versa)?

Communicate via a
third party, pg(

ij):
For f: think ‘hash function’.

Visualization Parallel Patterns

Rendezvous Trick

e Assume an irregular
partition.

e Assume problem
components /i, j on unknown
partitions p;, p; need to
communicate.

e How can p; find p; (and vice

versa)? 0
Communicate via a

third party, pr(; jy.-

For f: think ‘hash function’.

Visualization Parallel Patterns

Rendezvous Trick

e Assume an irregular
partition.
e Assume problem
components /i, j on unknown 0
partitions p;, p; need to
communicate.

e How can p; find p; (and vice

versa)? 0
Communicate via a
third party, pr(; jy.-
For f: think ‘hash function’.

Visualization Parallel Patterns

.w.«.%

i

ﬁmmsy&zv
QUL
AW E«om

N
WO

Partitioning for neighbor communication

Visualization Parallel Patterns

Example

E. Boman, K. Devine (Sandia)

Visualization Parallel Patterns

Example

@ 2 2 (2 @ @ ®
@ @ ® @ @)) @)
® © ® o @ @ ®
® © @ ® © @ @

E. Boman, K. Devine (Sandia)

Visualization Parallel Patterns

Example

e © ©& ©& ©
& © © © ©
& © © 6 ©
& © © © ©
OO OO —O©
OO0 0O 00
e 9 © © ©

E. Boman, K. Devine (Sandia)

Visualization Parallel Patterns

A simple strategy
Recursive Coordinate Bisection (‘RCB’) [Berger, Bokhari ‘87|

1st cut 3rd
- e
3rd
- o
®o
[J ® ®
® e 2nd
® ® °
2nd ®
[J Y ® P
®
e e l® - ®
3d 3rd

© Simple
@ Easy to update for changed geometry (‘incremental’)

@ Easy to fool
E. Boman, K. Devine (Sandia)

Visualization Parallel Patterns

Space-filling curves

Hilbert curve

Wikipedia

Visualization Parallel Patterns

Space-filling curves

Z

Morton curve (“Z curve")

Easily obtained by bit interleaving!
Wikipedia

Visualization Parallel Patterns

Space-filling curves

Carlo H. Sequin, UC Berkeley / Wikipedia

Visualization Parallel Patterns

Space-filling curves

[| | (|

Mt 1 1 T

1 25 50 75 100
© Simple, even for adaptive meshes

© Weight-able

© Cache-happy
@ Easy to update for changed geometry (‘incremental’)
@ Communication volume?

M. Berger

Visualization Parallel Patterns

Space-filling curves: Examples

M. Berger, M. Aftosmis

Visualization Parallel Patterns

Space-filling curves: Examples

M. Berger, M. Aftosmis

Visualization Parallel Patterns

Partitioning: Objectives

Main goals:
e Even distribution of work
e Minimize neighbor communication
Criteria:
e Cheap! (General problem: NP-complete)
e Incremental

e Partitioning itself is parallel

Visualization Parallel Patterns

Partitioning: Objectives

Main goals:
e Even distribution of work
e Minimize neighbor communication
Criteria:
e Cheap! (General problem: NP-complete)
e Incremental

e Partitioning itself is parallel

What if we don’t have geometry/coordinates?

Visualization Parallel Patterns

Chopping up the communication graph

K. Schloegel, G. Karypis, V. Kumar ‘00

Visualization Parallel Patterns

Chopping up the communication graph

K. Schloegel, G. Karypis, V. K|

Great model? How often
vertex 1 to B?

do we send

Visualization Parallel Patterns

Chopping up the communication graph

K. Schloegel, G. Karypis, V. K|

Great model? How often
vertex 1 to B?

Perhaps: assign weight to vertices,

edges

do we send

Visualization Parallel Patterns

Partitioning

Spectral partitioning demo

Visualization Parallel Patterns

Partitioning

Metis demo

Visualization Parallel Patterns

Finer points

e What if # inputs # # outputs?
e Might want to balance multiple objectives

e Types of work
e Types of communication

Software packages to look for:
e Zoltan (free, LGPL)
e PT-Scotch (free, copyleft)

e Metis (free to use, proprietary, some source available)

Visualization Parallel Patterns

Finer points

e What if # inputs # # outputs? (— hypergraphs)
e Might want to balance multiple objectives

e Types of work
e Types of communication

Software packages to look for:
e Zoltan (free, LGPL)
e PT-Scotch (free, copyleft)

e Metis (free to use, proprietary, some source available)

Visualization Parallel Patterns

Outline

Parallel Patterns

Obtaining partitions
Pipelines

Visualization Parallel Patterns

Pipelined Computation

y = fy(-- H(Ax)))
= (fyo---of)(x)

where N is fixed.

Visualization Parallel Patterns

Pipelined Computation: Graph

1alization

Parallel Patterns

Pipelined Computation: Graph

@flf\ﬁf\ﬁf\’%/\ﬁ‘/\fﬁ@
NN AN O

Processor Assignment?

Visualization Parallel Patterns

Pipelined Computation:

e Image processing
e Any multi-stage algorithm
e Pre/post-processing or |/0O

o Qut-of-Core algorithms

Specific simple examples:
e Sorting (insertion sort)

e Triangular linear system solve
(‘backsubstitution’)
e Key: Pass on values as soon as
they're available
(will see more efficient algorithms for
both later)

Examples

Visualization Parallel Patterns

Pipelined Computation: Issues

e Non-optimal while pipeline fills or
empties
e Often communication-inefficient
o for large data

e Needs some attention to
synchronization, deadlock
avoidance

e Can accommodate some
asynchrony
But don’t want:
e Pile-up
e Starvation

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?
e MPI: Larger than # ranks?

Visualization Parallel Patterns

Mapping to Mechanisms

OpenMP?

MPI?

MPI: Larger than # ranks?
GPU?

Visualization Parallel Patterns

Outline

Parallel Patterns

Obtaining partitions

Reduction

Visualization Parallel Patterns

Reduction

Yy = f(-°°f(f(X1,X2),X3),...,XN)

where N is the input size.

Visualization Parallel Patterns

Reduction

Yy = f(”°f(f(X17X2)7X3)7"°7XN)

where N is the input size.

Also known as. ..
e Lisp/Python function reduce (Scheme: fold)
e C+-+ STL std::accumulate

Visualization Parallel Patterns

Reduction: Graph

Visualization Parallel Patterns

Reduction: Graph

Painful! Not parallelizable.

Visualization Parallel Patterns

Approach to Reduction

Can we do better?

“Tree" very imbalanced. What property
of f would allow ‘rebalancing’?

Visualization Parallel Patterns

Approach to Reduction

Can we do better?

“Tree" very imbalanced. What property
of f would allow ‘rebalancing’?

f(f(x,y),z) = f(x, f(y, 2))
Looks less improbable if we let
xoy =f(x,y):

xo(yoz))=(xoy)oz

Has a very familiar name: Associativity

Visualization Parallel Patterns

Reduction: A Better Graph

@

Visualization Parallel Patterns

Reduction: A Better Graph

@

Processor allocation?

Visualization Parallel Patterns

Mapping to Mechanisms

e Single threads?

Visualization Parallel Patterns

Mapping to Mechanisms

e Single threads?
e OpenMP?

Visualization Parallel Patterns

Mapping to Mechanisms

e Single threads?
e OpenMP?
e MPI?

Visualization Parallel Patterns

Mapping to Mechanisms

Single threads?

OpenMP?

MPI?

MPI: Larger than # ranks?

Visualization Parallel Patterns

Mapping to Mechanisms

Single threads?

OpenMP?

MPI?

MPI: Larger than # ranks?
GPU?

Visualization Parallel Patterns

Mapping Reduction to the GPU

e Obvious: Want to use tree-based approach.
e Problem: Two scales, Work group and Grid
e Need to occupy both to make good use of the machine.

e In particular, need synchronization after each tree stage.

With material by M. Harris
(Nvidia Corp.)

Visualization Parallel Patterns

Mapping Reduction to the GPU

Obvious: Want to use tree-based approach.

Problem: Two scales, Work group and Grid
e Need to occupy both to make good use of the machine.

In particular, need synchronization after each tree stage.

Solution: Use a two-scale algorithm.

2 :2 : :\ /: :; s i:
~ - il -
\‘\\ i e \ ! v e ,,”
~ o ~ \ 7 v i -

S e \\ N , ,/ -
Sa S \ / 4 -
\\\\\ N/ //’/’

N / 2

In particular: Use multiple grid invocations to achieve

H _ ; H With material by M. Harris
inter-workgroup synchronization. (Nvidia Corp)

Visualization Parallel Patterns

Kernel V1

__kernel void reduce0(__global T xg_idata, __global T xg_odata,
unsigned int n, __local Tx Idata)
{

unsigned int lid = get_local_id (0);
unsigned int i = get_global_id (0);

Idata[lid] = (i <n)? g.idata[i] : O;
barrier (CLK_.LOCAL_MEM_FENCE);

for (unsigned int s=1; s < get_local_size (0); s %= 2)
if ((lid % (2%s)) == 0)
Idata[lid] += Idata[lid + s];
barrier (CLK_.LOCAL_.MEM_FENCE);
}

if (lid == 0) g-odata[get_group_id(0)] = Idata [0];

Visualization Parallel Patterns

Values (shared memory)l10 [-1]0 [2 3 [5 2[3 2 [

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Interleaved Addressing

~
o
:
)
' |

EEY %’if?ﬁ Yy

"o @

values [18] 1 [7 [1]6 [2]

Thad
values [24][1 [7 [1 2[8 5 [w[a]o]7]13[11]2]2]

Thread l
IDs

Values]41[1[7 1[[[[

2
U|
&
©
~
-
o
-
s
N
N

©
-
&
©
~
-
)
-
s
N
N

o

-
~
'
w
©

7[13[n]2]2]

With material by M. Harris
(Nvidia Corp.)

Visualization Parallel Patterns

Interleaved Addressing

~
o
-
jury

Values (shared memory)l10 [-1]0 [2 3 [5 2[3 2 [

e rea <
oA @/ / <§>/ <§>/ ® @/
l

values [11[1 [7[1]2]2]8]

2
U|
&
©
~
-
o
-
s

Step 2 Thread
Stride 2 IDs @‘/

values [18] 1 [7 [1]6 [2]

©
-
&
©
~
-
)
-
s
N
N

Step 3 Thread
Stride 4 IDs

values [24][1 [7 [1 2[8 5 [w[a]o]7]13[11]2]2]

Step 4 Thread l

Stride 8 IDs

o

Values]41[1[7 1[[[[

-
~
'
w
©

7[13[n]2]2]

Issue: Slow modulo, Divergence

With material by M. Harris

(Nvidia Corp.)

Visualiza

tion

Parallel Patterns

Kernel V2

__kernel void reduce2(__global T xg_idata, __global T xg_odata,
unsigned int n, __local Tx Idata)
{

unsigned int lid = get_local_id (0);
unsigned int i = get_global_id (0);

Idata[lid] = (i <n)? g.idata[i] : O;
barrier (CLK_.LOCAL_MEM_FENCE);

for (unsigned int s= get_local_size (0)/2; s>0; s>>=1)
if (lid <s)
Idata[lid] += Idata[lid + s];
barrier (CLK_.LOCAL_.MEM_FENCE);
}

if (lid == 0) g-odata[get_local_size (0)] = Idata [0];

Visualization Parallel Patterns

Sequential Addressing

Values(sharedmemory)]m[1[8[-1[0[-2[3[5[-2[-3[2[7[0[11[0[2]

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

——

Thread
IDs

012@/@/567

values [8 [210]6 [0 o3z]2]a]2]7]o11]0]2]

Thread
IDs

Values [8 [7 [13]13] 0o 3]z [2]a]2]7 o 11]0]2]
Thread >

Values [21[20[13]13] 0 [o [3]7[2]a]2 7 o110]2]
e @

Values [41]20[13]13] 0 [o [3]7[2]a]2 7 o110]2]

With material by M
(Nvidia Corp.)

Visualization

. Harris

Parallel Patterns

Sequential Addressing

Values(sharedmemory)]m[1[8[-1[0[-2[3[5[-2[-3[2[7[0[11[0[2]

——

Step 1 Thread
Stride 8 bs G @/@‘/5 5 (7

values [8 [210]6 [0 o3z]2]a]2]7]o11]0]2]

Step 2 Thread
Stride 4 IDs

Values [8 [7 [13]13] 0o 3]z [2]a]2]7 o 11]0]2]
Sm TG

Values [21[20[13]13] 0 [o [3]7[2]a]2 7 o110]2]
Seps, T @

Values [41]20[13]13] 0 [o [3]7[2]a]2 7 o110]2]

Better! But still not “efficient”.

Only half of all work items after first round,

then a quarter, . .. With material by M. Harris

(Nvidia Corp.)

Visualization Parallel Patterns

Recap: Parallel Complexity

Distinguish:

Time on T processors: Tp

Step Complexity/Span T..: Minimum number of steps
taken if an infinite number of processors are available
Work per step S;

Work Complexity/Work T; = ZZ—:“& Si: Total number of
operations performed

Parallelism T;/T.: average amount of work along span
e P> T;/T, doesn't make sense.

Algorithm-specific!

Visualization Parallel Patterns

Parallel Complexity for Reduction

Number of Items N
Actual work to be done: W = O(N) additions.

Step Complexity: Let d = [log, N]. Then T, =d, S; = O(2971).
Work Complexity:

=) 5=0 <Z 2d—f> = 0(2%) = O(N)
t=1 t=1

Visualization Parallel Patterns

Parallel Complexity for Reduction

Number of Items N
Actual work to be done: W = O(N) additions.

Step Complexity: Let d = [log, N]. Then T, =d, S; = O(2971).
Work Complexity:

=) 5=0 <Z 2d—f> = 0(2%) = O(N)
t=1 t=1

“Work-efficient:” T; ~ W.

Visualization Parallel Patterns

Greedy Scheduling

Theorem (Graham ‘68, Brent ‘75)

A parallel algorithm with span T,, and work complexity T; can be
executed on a shared-memory machine with P processors in no

more than -
TP S % + Too

steps.

Observations:
e Think of T, as the length of the “critical path”.
e The first summand can be made to go away by increasing P.

e Only valid for shared-memory.

Visualization Parallel Patterns

Greedy Scheduling

Theorem (Graham ‘68, Brent ‘75)

A parallel algorithm with span T,, and work complexity T; can be
executed on a shared-memory machine with P processors in no
more than

T
TP S % + Too

steps.

Observations: Estimate for P = 17

e Think of T as the leng Proof sketch?
e The first summand can

ion?
e Only valid for shared-m4g What about reduction

What is P for a GPU?

Visualization Parallel Patterns

Kernel V3 Part 1

__kernel void reduce6(__global T xg_idata, __global T xg_odata,
unsigned int n, volatile __local Tx Idata)
{

unsigned int lid = get_local_id (0);
unsigned int i = get_group_id(0)x(
get_local_size (0)%2) + get_local_id (0);
unsigned int gridSize = GROUP_SIZEx2xget_num _groups(0);
ldata[lid] = 0;

while (i < n)
Idata[lid] += g-idata[i];
if (i + GROUP_SIZE < n)
Idata[lid] += g_idata[i+GROUP_SIZE];
i += gridSize;

barrier (CLK_.LOCAL_.MEM_FENCE);

Visualization Parallel Patterns

Kernel V3 Part 2

if (GROUP_SIZE >= 512)

if (lid < 256) { Idata[lid] += Idata[lid + 256]; }
barrier (CLK_LOCAL_MEM_FENCE);

}

W e

if (GROUP_SIZE >= 128)

{/x . %/}

if (lid < 32)

{
if (GROUP_SIZE >= 64) { Idata[lid] += Idata[lid + 32]; }
if (GROUP_SIZE >= 32) { Idata[lid] += Idata[lid + 16]; }
WY
if (GROUP_SIZE >= 2) { Idata[lid] += Idata[lid + 1]; }

}

if (lid == 0) g-odata[get_group_id(0)] = Idata [0];

Visualization Parallel Patterns

Time (ms)

0.1

0.01

Performance Comparison

Divergent Branches

Bank Conflicts
3: Sequential Addressing

4: First add during global
load
=¥=5: Unroll last warp

—8—6: Completely unroll

=== 7: Multiple elements per
thread (max 64 blocks)

—4— 1. Interleaved Addressing:

—&—2: Interleaved Addressing:

Qv
AQ!
3

» ®
,L«—O'L\b‘ %,Lm'bq’

©
Bb“gs‘
A

9
@’\\6
B

x
\‘3&5‘)
»

@

N
N
0
o'

o
RS

&5
'5‘5%&

With material by M
(Nvidia Corp.)

Visualization

. Harris

Parallel Patterns

Reduction: Examples

Sum, Inner Product, Norm

e Occurs in iterative methods
Minimum, Maximum
Data Analysis

e Evaluation of Monte Carlo
Simulations

List Concatenation, Set Union
Matrix-Vector product (but...)

Visualization Parallel Patterns

Reduction: Issues

e When adding: floating point
cancellation?

e Serial order goes faster:
can use registers for intermediate
results

e Requires availability of neutral
element

e GPU-Reduce: Optimization
sensitive to data type

Visualization Parallel Patterns

Outline

Parallel Patterns

Obtaining partitions

Map-Reduce

Visualization Parallel Patterns

Map-Reduce

Sounds like this:

y=f(---f(f(glx1), g(x)),
g(x3)), -, glxn))

where N is the input size.
e Lisp naming, again

e Mild generalization of reduction

Visualization Parallel Patterns

Map-Reduce

But no. Not even close.

Sounds like this:

y=f(---f(f(glx1), g(x)),
g(x3)), -, glxn))

where N is the input size.
e Lisp naming, again

e Mild generalization of reduction

Visualization Parallel Patterns

Map-Reduce: Graph

Visualization Parallel Patterns

MapReduce: Discussion
MapReduce > map + reduce:

e Used by Google (and many others) for
large-scale data processing

Map generates (key, value) pairs
e Reduce operates only on pairs with
identical keys
e Remaining output sorted by key

Represent all data as character strings
e User must convert to/from internal repr.

Messy implementation

o Parallelization, fault tolerance, monitoring,
data management, load balance, re-run
“stragglers”, data locality

Works for Internet-size data

Simple to use even for inexperienced users

J]500")

Visualization Parallel Patterns

oogle

MapReduce: Examples

String search

(e.g. URL) Hit count from Log
Reverse web-link graph

e desired: (target URL,sources)
Sort

Indexing
e desired: (word,document IDs)

Machine Learning, Clustering, ...

Visualization Parallel Patterns

Outline

Parallel Patterns

Obtaining partitions

Scan

Visualization Parallel Patterns

Scan

y1 = X1
y2 = f(y1,x2)

yn = f(yn—1,xn)
where N is the input size. (Think: N large, f(x,y) =x+y)

e Prefix Sum/Cumulative Sum
e Abstract view of: loop-carried dependence

e Also possible: Segmented Scan

Visualization Parallel Patterns

Scan: Graph

slolelolelo

i

Visualization Parallel Patterns

Scan: Granh

This can't possibly be parallelized.
@ Or can it?

Visualization Parallel Patterns

Scan: Granh

This can't possibly be parallelized.
@ Or can it?
Again: Need assumptions on f.

Associativity, commutativity.

Visualization Parallel Patterns

Scan: Implementation

Parallel Patterns

Scan: Implementation

Work-efficient?

Parallel Patterns

Scan: Implementation Il

Two sweeps: Upward, downward,
both tree-shape

On upward sweep:

e Get values L and R from left and right
child

e Save L in local variable Mine

e Compute Tmp = L 4 R and pass to parent
On downward sweep:

e Get value Tmp from parent

e Send Tmp to left child

e Sent Tmp+Mine to right child

Visualization Parallel Patterns

Scan: Implementation Il

Two sweeps: Upward, downward,
both tree-shape

On upward sweep:

e Get values L and R from left and right
child

e Save L in local variable Mine

e Compute Tmp = L 4 R and pass to parent
On downward sweep:

e Get value Tmp from parent

e Send Tmp to left chj™

e Sent Tmp+Mine to f Work-efficient?
Span rel. to first attempt?

Visualization Parallel Patterns

Scan: Examples

Anything with a loop-carried
dependence

One row of Gauss-Seidel
One row of triangular solve

Segment numbering if boundaries
are known

Low-level building block for many
higher-level algorithms algorithms

FIR/IIR Filtering

G.E. Blelloch:
Prefix Sums and their Applications

Visualization Parallel Patterns

http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

Scan: Issues

e Subtlety: Inclusive/Exclusive Scan
e Pattern sometimes hard to
recognize
e But shows up surprisingly often
e Need to prove
associativity /commutativity

e Useful in Implementation:
algorithm cascading

e Do sequential scan on parts, then
parallelize at coarser granularities

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?
e MPI: Larger than # ranks?

Visualization Parallel Patterns

Mapping to Mechanisms

OpenMP?

MPI?

MPI: Larger than # ranks?
GPU?

Visualization Parallel Patterns

Challenge

Sort (fixed-size) integers using
scan

Visualization Parallel Patterns

Outline

Parallel Patterns

Obtaining partitions

Divide-and-Conquer

Visualization Parallel Patterns

Divide and Conquer

[[[[% [[% %]

EITET] BT

fori e {1,...,M}.

Main purpose: A way of

partitioning up fully

dependent tasks. [uofu] [u2fus| [usfus| [ue|ur
~N 7 N
[vo[wvi|ve|ws] [va]vs|ve|vr]

(o [wa [we [ws [wa|ws[wo]wr]

Visualization Parallel Patterns

Divide and Conquer

|X0|X1|X2|X3|X4|X5|x6|x7|

|xo|X1|xz|xs| EIEIEIED

for i € {1,..., M}. X6 | [x7
Main purpose: A way of

partitioning up fully

dependent tasks. [uofu] [u2fus| [usfus| [ue|ur
N/ N

[e[wlaln] [w[w[%][w]

Processor allocation? |W0|W1|W2[W3|W4|W5|W6|W7|

Parallel Patterns

Divide and Conquer: Examples

GEMM, TRMM, TRSM, GETRF

) RN MM
° FFT rrese e me: IR
e Sorting: Bucket sort, Merge sort B HH e
e N-Body problems (Barnes-Hut,

FMM) #io‘ e | iR
e Adaptive Integration ELTE |

More fun with work and span:
D&C analysis lecture

Visualization Parallel Patterns

http://supertech.csail.mit.edu/cilk/lecture-2.pdf

Mapping to Mechanisms

e OpenMP?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?
e MPI: Larger than # ranks?

Visualization Parallel Patterns

Mapping to Mechanisms

OpenMP?

MPI?

MPI: Larger than # ranks?
GPU?

Visualization Parallel Patterns

Divide and Conquer: Issues

“No idea how to parallelize that”
o — Try D&C
Non-optimal during partition, merge
e But: Does not matter if deep levels do
heavy enough processing

Subtle to map to fixed-width machines
(e.g. GPUs)

e Varying data size along tree — Scan!

Bookkeeping nontrivial for non-2" sizes

Side benefit: D&C is generally
cache-friendly

Visualization Parallel Patterns

Outline

Parallel Patterns

Obtaining partitions

General Data Dependencies

Visualization Parallel Patterns

General Dependency Graphs

L | A L |
mouoww oo O

Parallel Patterns

General Dependency Graphs

Il

—+
—

>
N

I
= =m

I

n/—\

me—x
o
N—r

DO TUVOOTMmO
[T
~a3®
Omw

o=

2

Great: All patterns discussed so far can
be reduced to this one.

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?

Visualization Parallel Patterns

Mapping to Mechanisms

e OpenMP?
e MPI?
e MPI: Larger than # ranks?

Visualization Parallel Patterns

Mapping to Mechanisms

OpenMP?

MPI?

MPI: Larger than # ranks?
GPU?

Visualization Parallel Patterns

Cilk

cilk int fib (int n) Features:

e Adds keywords spawn,

if (n <2) retumn n; sync, (inlet, abort)

else
{ e Remove keywords — valid
int x, y; (seq.) C
Timeline:
x = spawn fib (n—1);

y = spawn fib (n—2); e Developed at MIT, starting

in ‘94
sync; e Commercialized in ‘06
return) (xiy); e Bought by Intel in ‘09
} e Available in the Intel
} Compilers

Visualization Parallel Patterns

cilk int fib (int n)

if (n < 2) return n;
else

{

int x, y;

x = spawn fib (n—1);
y = spawn fib (n—2);

sync;

return (x+vy);

I

Efficient implementation?

Cilk

Features:

e Adds keywords spawn,
sync, (inlet, abort)

e Remove keywords — valid
(seq.) C

Timeline:

e Developed at MIT, starting
in '94

e Commercialized in ‘06

e Bought by Intel in ‘09

e Available in the Intel
Compilers

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

®) ® ®

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

®) ® ®

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

® ® ®)

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

® ® ®)

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

© 00 o

When a processor runs out of
work, it steals a thread from the .° o g

. . '/ .¢>
top of a random victim’s deque. *

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

© 00 o

When a processor runs out of
work, it steals a thread from the .° o g

. . '/ .¢>
top of a random victim’s deque. *

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

@ © 6 ®

When a processor runs out of
work, it steals a thread from the .° o g

. . '/ .0>
top of a random victim’s deque. *

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

When a processor runs out of

work, it steals a thread from the .° °; -

. . < '/‘ ..¢>
top of a random victim’s deque. *

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

Each processor maintains a work degue
of ready threads, and it manipulates the
bottom of the deque like a stack.

-
© 00 o

When a processor runs out of

’
fom the .°, ,--?.‘>
Why is Work-Stealing better 5 deque. ot
than a Task Queue? With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

General Graphs: Implementations

Intel Cilk(+) (also: vector math)
OpenCL (“Events", Out-of-order queues)
Intel Thread Building Blocks

StarPU

(Charm+-+)

Many more

Visualization Parallel Patterns

http://cilkplus.org/
http://threadingbuildingblocks.org/
http://runtime.bordeaux.inria.fr/StarPU/
http://charm.cs.illinois.edu/

General Graphs: Issues

Model can accommodate ‘speculative
execution’

e Launch many different ‘approaches’
e Abort the others as soon as one
satisfactory one emerges.

Discover dependencies, make up schedule
at run-time

o Usually less efficient than the case of
known dependencies

e Map-Reduce absorbs many cases that
would otherwise be general

On-line scheduling: complicated

Not a good fit if a more specific pattern
applies

Good if inputs/outputs/functions are
(somewhat) heavy-weight

Visualization Parallel Patterns

Visualization Parallel Patterns

Image Credits

Pipe: sxc.hu/mterraza

Tree: sxc.hu/bertvthul

Radar: sxc.hu/KimPouss
Quadtree: flickr.com/ethanhein @

Visualization Parallel Patterns

	Tool of the day: 3D Visualization
	Parallel Patterns
	Partition
	Pipelines
	Reduction
	Map-Reduce
	Scan
	Divide-and-Conquer
	General Data Dependencies

