
High-Performance Scientific Computing
Lecture 13: Parallel Patterns

MATH-GA 2011 / CSCI-GA 2945 · December 5, 2012

Visualization Parallel Patterns

Today

Tool of the day: 3D Visualization

Parallel Patterns

Visualization Parallel Patterns

Bits and pieces

• HW6: soon

• Dec 12: No class–good luck on finals!

• Dec 17?/18?/19: Project presentations
• Will announce precise date, watch email

• Project guidelines posted

• Need help with project? Ask/come see us!

• Class evaluations

Visualization Parallel Patterns

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Visualization Parallel Patterns

3D vis demo time

Visualization Parallel Patterns

Visualization demo

Software links:

• libsilo (LLNL “WCI”, BSD license)

• VisIt (LLNL “WCI”, BSD license)

Alternative:

• Paraview (KitWare/LANL, BSD license)

• TecPlot ($$$)

Visualization Parallel Patterns

https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/visit/
http://paraview.org

Outline

Tool of the day: 3D Visualization

Parallel Patterns
Partition

Obtaining partitions

Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

Outline

Tool of the day: 3D Visualization

Parallel Patterns
Partition

Obtaining partitions

Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

Partition

yi = fi(xi−1, xi , xi+1)

where i ∈ {1, . . . ,N}.

Includes straightforward generalizations to dependencies on a larger
(but not O(P)-sized!) set of neighbor inputs.

Point: Processor i owns xi . (“owns” = is “responsible for
updating”)

Visualization Parallel Patterns

Partition

yi = fi(xi−1, xi , xi+1)

where i ∈ {1, . . . ,N}.

Includes straightforward generalizations to dependencies on a larger
(but not O(P)-sized!) set of neighbor inputs.

Point: Processor i owns xi . (“owns” = is “responsible for
updating”)

Visualization Parallel Patterns

Partition

yi = fi(xi−1, xi , xi+1)

where i ∈ {1, . . . ,N}.

Includes straightforward generalizations to dependencies on a larger
(but not O(P)-sized!) set of neighbor inputs.

Point: Processor i owns xi . (“owns” = is “responsible for
updating”)

Visualization Parallel Patterns

Partition: Graph

x0 x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

un+1
i ,j =

1

h2
(−4uni ,j+uni−1,j+uni+1,j

+ uni ,j−1 + uni ,j+1)

• Sequential

• OpenMP?

• MPI?

• GPU — 2D?

• GPU — 3D?

What if there’s geometry?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

un+1
i ,j =

1

h2
(−4uni ,j+uni−1,j+uni+1,j

+ uni ,j−1 + uni ,j+1)

• Sequential

• OpenMP?

• MPI?

• GPU — 2D?

• GPU — 3D?

What if there’s geometry?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

un+1
i ,j =

1

h2
(−4uni ,j+uni−1,j+uni+1,j

+ uni ,j−1 + uni ,j+1)

• Sequential

• OpenMP?

• MPI?

• GPU — 2D?

• GPU — 3D?

What if there’s geometry?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

un+1
i ,j =

1

h2
(−4uni ,j+uni−1,j+uni+1,j

+ uni ,j−1 + uni ,j+1)

• Sequential

• OpenMP?

• MPI?

• GPU — 2D?

• GPU — 3D?

What if there’s geometry?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

un+1
i ,j =

1

h2
(−4uni ,j+uni−1,j+uni+1,j

+ uni ,j−1 + uni ,j+1)

• Sequential

• OpenMP?

• MPI?

• GPU — 2D?

• GPU — 3D?

What if there’s geometry?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

un+1
i ,j =

1

h2
(−4uni ,j+uni−1,j+uni+1,j

+ uni ,j−1 + uni ,j+1)

• Sequential

• OpenMP?

• MPI?

• GPU — 2D?

• GPU — 3D?

What if there’s geometry?

Visualization Parallel Patterns

Mapping to Mechanisms: Stencils

Common example (“5-point
stencil”):

un+1
i ,j =

1

h2
(−4uni ,j+uni−1,j+uni+1,j

+ uni ,j−1 + uni ,j+1)

• Sequential

• OpenMP?

• MPI?

• GPU — 2D?

• GPU — 3D?

What if there’s geometry?

Visualization Parallel Patterns

Partition: Issues

• Same computation often repeated
many times
• As time steps in a simulation
• Until ‘convergence’

• → Synchronization?

• Main structures: Array (image,
grid), Graph (mesh)

• Performance impact of partition?

• Granularity?

• Only useful when the computation
is mainly local

• Load Balancing: Thorny issue
(next)

Visualization Parallel Patterns

Rendezvous Trick

• Assume an irregular
partition.

• Assume problem
components i , j on unknown
partitions pi , pj need to
communicate.

• How can pi find pj (and vice
versa)?

Communicate via a
third party, pf (i ,j).

For f : think ‘hash function’.

pi

pj

i

j

pf (i ,j)

“I’m in pi .”

“I
’m

in
p j

.”

Visualization Parallel Patterns

Rendezvous Trick

• Assume an irregular
partition.

• Assume problem
components i , j on unknown
partitions pi , pj need to
communicate.

• How can pi find pj (and vice
versa)?

Communicate via a
third party, pf (i ,j).

For f : think ‘hash function’.

pi

pj

i

j pf (i ,j)

“I’m in pi .”

“I
’m

in
p j

.”

Visualization Parallel Patterns

Rendezvous Trick

• Assume an irregular
partition.

• Assume problem
components i , j on unknown
partitions pi , pj need to
communicate.

• How can pi find pj (and vice
versa)?

Communicate via a
third party, pf (i ,j).

For f : think ‘hash function’.

pi

pj

i

j pf (i ,j)

“I’m in pi .”

“I
’m

in
p j

.”

Visualization Parallel Patterns

Rendezvous Trick

• Assume an irregular
partition.

• Assume problem
components i , j on unknown
partitions pi , pj need to
communicate.

• How can pi find pj (and vice
versa)?

Communicate via a
third party, pf (i ,j).

For f : think ‘hash function’.

pi

pj

i

j pf (i ,j)

“I’m in pi .”

“I
’m

in
p j

.”
Visualization Parallel Patterns

Rendezvous Trick

• Assume an irregular
partition.

• Assume problem
components i , j on unknown
partitions pi , pj need to
communicate.

• How can pi find pj (and vice
versa)?

Communicate via a
third party, pf (i ,j).

For f : think ‘hash function’.

pi

pj

i

j pf (i ,j)

“I’m in pi .”

“I
’m

in
p j

.”

Visualization Parallel Patterns

Rendezvous Trick

• Assume an irregular
partition.

• Assume problem
components i , j on unknown
partitions pi , pj need to
communicate.

• How can pi find pj (and vice
versa)?

Communicate via a
third party, pf (i ,j).

For f : think ‘hash function’.

pi

pj

i

j pf (i ,j)

“I’m in pi .”

“I
’m

in
p j

.”

Visualization Parallel Patterns

Partitioning for neighbor communication

Visualization Parallel Patterns

Example

Slide 7

“Simple” Example (1)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

7x5 grid
5-point stencil
4 processors

E. Boman, K. Devine (Sandia)

Visualization Parallel Patterns

Example

Slide 8

“Simple” Example (2)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

Max Data Comm: 14
Total Volume: 42
Max Nbor Proc: 2
Max Imbalance: 3%

1

2

3

0 0

0

0 0 0 0 0

0

1 1

1 1 1 1 1

1

2 2 2 2

2 2 2

2

3 3 3 3 3 3

3

First 35/4 points to processor 0;
next 35/4 points to processor 1; etc.

E. Boman, K. Devine (Sandia)

Visualization Parallel Patterns

Example

Slide 9

0

0

0

0 0

0

1 1 2 2 3

0

0 1

1 1 2 2 3

1

0 1 1 2

2 2 3

2

0 1 1 2 2 3

3

“Simple” Example (3)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

Max Data Comm: 10
Total Volume: 30
Max Nbor Proc: 2
Max Imbalance: 14% One-dimensional striped partition

E. Boman, K. Devine (Sandia)

Visualization Parallel Patterns

A simple strategy

Recursive Coordinate Bisection (‘RCB’) [Berger, Bokhari ‘87]

1st cut

2nd

2nd

3rd

3rd3rd

3rd

+ Simple
+ Easy to update for changed geometry (‘incremental’)
- Easy to fool
E. Boman, K. Devine (Sandia)

Visualization Parallel Patterns

Space-filling curves

Hilbert curve

Wikipedia

Visualization Parallel Patterns

Space-filling curves

Morton curve (“Z curve”)

Easily obtained by bit interleaving!

Wikipedia

Visualization Parallel Patterns

Space-filling curves

Carlo H. Sequin, UC Berkeley / Wikipedia

Visualization Parallel Patterns

Space-filling curves

Space-filling Curves

1 25 50 75 100

Partition work into equal chunks.
+ Simple, even for adaptive meshes
+ Weight-able
+ Cache-happy
+ Easy to update for changed geometry (‘incremental’)
- Communication volume?

M. Berger

Visualization Parallel Patterns

Space-filling curves: Examples

M. Berger, M. Aftosmis

Visualization Parallel Patterns

Space-filling curves: Examples

M. Berger, M. Aftosmis

Visualization Parallel Patterns

Partitioning: Objectives

Main goals:

• Even distribution of work

• Minimize neighbor communication

Criteria:

• Cheap! (General problem: NP-complete)

• Incremental

• Partitioning itself is parallel

What if we don’t have geometry/coordinates?

Visualization Parallel Patterns

Partitioning: Objectives

Main goals:

• Even distribution of work

• Minimize neighbor communication

Criteria:

• Cheap! (General problem: NP-complete)

• Incremental

• Partitioning itself is parallel

What if we don’t have geometry/coordinates?

Visualization Parallel Patterns

Chopping up the communication graph

CONTENTS 4
1

2

4

3

5

7 8

6

10

9

11

12

B

A

C

Figure 3: A partitioned graph with an edge-cut of seven. Here, nine communications are incurred during parallel processing.in Figure 3. Here, three subdomains, A, B, and C are shown. The edge-cut of the (three-way) partitioningis seven. During parallel computation, the processor corresponding to subdomain A will need to send thedata for vertices 1 and 3 to the processor corresponding to subdomain B, and the data for vertex 4 to theprocessor corresponding to subdomain C. Similarly, B needs to send the data for 5 and 7 to A and the datafor 7 and 8 to C. Finally, C needs to send the data for 9 to B and the data for 10 to A. This equals nineunits of data to be sent, while the edge-cut is seven. The reason that edge-cut and total communicationvolume are not the same is because the edge-cut counts every edge cut, while data is required to be sentonly one time if two or more edges of a single vertex are cut by the same subdomain (as is the case, forexample, between vertex 3 and subdomain B in Figure 3). It should also be noted that total communicationvolume alone cannot accurately predict inter-processor communication overhead. A more precise measure isthe maximum time required by any of the processors to perform communication (because computation andcommunication occur in alternating phases). This depends upon a number of factors, including the amountof data to be sent out of any one processor, as well as the number of processors with which a processormust communicate. In particular, on message-passing architectures, minimizing the maximum number ofmessage startups that any one processor must perform can sometimes be more important than minimizingthe communications volume [34]. Nevertheless, there still tends to be a strong correlation between edge-cutsand inter-processor communication costs for graphs of uniform degree (i. e., graphs in which most verticeshave about the same number of edges). This is a typical characteristic of graphs derived from scienti�csimulations. For this reason, the traditional min-cut partitioning problem is a reasonable approximation tothe problem of minimizing the inter-processor communications that underly many scienti�c simulations.Computing a k-way Partitioning via Recursive Bisection Graphs are frequently partitioned into ksubdomains by recursively computing two-way partitionings (i. e., bisections) of the graph [6]. This methodrequires the computation of k�1 bisections. If k is not a power of two, then for each bisection, the appropriatesubdomain weights need to be speci�ed in order to ensure that the resulting k-way partitioning is balanced.It is known that for a large class of graphs derived from scienti�c simulations, recursive bisection algorithmsare able to compute k-way partitionings that are within a constant factor of the optimal solution [84].Furthermore, if the balance constraint is su�ciently relaxed, then recursive bisection methods can be usedto compute k-way partitionings that are within log p of the optimal for all graphs [84]. Since the directcomputation of a good k-way partitioning is harder in general than the computation of a good bisection(although both problems are NP-complete), recursive bisection has become a widely used technique.0.3 Static Graph Partitioning TechniquesThe graph partitioning problem is known to be NP-complete. Therefore, in general it is not possible to com-pute optimal partitionings for graphs of interesting size in a reasonable amount of time. This fact, combined

K. Schloegel, G. Karypis, V. Kumar ‘00

Great model? How often do we send
vertex 1 to B?

Visualization Parallel Patterns

Chopping up the communication graph

CONTENTS 4
1

2

4

3

5

7 8

6

10

9

11

12

B

A

C

Figure 3: A partitioned graph with an edge-cut of seven. Here, nine communications are incurred during parallel processing.in Figure 3. Here, three subdomains, A, B, and C are shown. The edge-cut of the (three-way) partitioningis seven. During parallel computation, the processor corresponding to subdomain A will need to send thedata for vertices 1 and 3 to the processor corresponding to subdomain B, and the data for vertex 4 to theprocessor corresponding to subdomain C. Similarly, B needs to send the data for 5 and 7 to A and the datafor 7 and 8 to C. Finally, C needs to send the data for 9 to B and the data for 10 to A. This equals nineunits of data to be sent, while the edge-cut is seven. The reason that edge-cut and total communicationvolume are not the same is because the edge-cut counts every edge cut, while data is required to be sentonly one time if two or more edges of a single vertex are cut by the same subdomain (as is the case, forexample, between vertex 3 and subdomain B in Figure 3). It should also be noted that total communicationvolume alone cannot accurately predict inter-processor communication overhead. A more precise measure isthe maximum time required by any of the processors to perform communication (because computation andcommunication occur in alternating phases). This depends upon a number of factors, including the amountof data to be sent out of any one processor, as well as the number of processors with which a processormust communicate. In particular, on message-passing architectures, minimizing the maximum number ofmessage startups that any one processor must perform can sometimes be more important than minimizingthe communications volume [34]. Nevertheless, there still tends to be a strong correlation between edge-cutsand inter-processor communication costs for graphs of uniform degree (i. e., graphs in which most verticeshave about the same number of edges). This is a typical characteristic of graphs derived from scienti�csimulations. For this reason, the traditional min-cut partitioning problem is a reasonable approximation tothe problem of minimizing the inter-processor communications that underly many scienti�c simulations.Computing a k-way Partitioning via Recursive Bisection Graphs are frequently partitioned into ksubdomains by recursively computing two-way partitionings (i. e., bisections) of the graph [6]. This methodrequires the computation of k�1 bisections. If k is not a power of two, then for each bisection, the appropriatesubdomain weights need to be speci�ed in order to ensure that the resulting k-way partitioning is balanced.It is known that for a large class of graphs derived from scienti�c simulations, recursive bisection algorithmsare able to compute k-way partitionings that are within a constant factor of the optimal solution [84].Furthermore, if the balance constraint is su�ciently relaxed, then recursive bisection methods can be usedto compute k-way partitionings that are within log p of the optimal for all graphs [84]. Since the directcomputation of a good k-way partitioning is harder in general than the computation of a good bisection(although both problems are NP-complete), recursive bisection has become a widely used technique.0.3 Static Graph Partitioning TechniquesThe graph partitioning problem is known to be NP-complete. Therefore, in general it is not possible to com-pute optimal partitionings for graphs of interesting size in a reasonable amount of time. This fact, combined

K. Schloegel, G. Karypis, V. Kumar ‘00

Great model? How often do we send
vertex 1 to B?

Visualization Parallel Patterns

Chopping up the communication graph

CONTENTS 4
1

2

4

3

5

7 8

6

10

9

11

12

B

A

C

Figure 3: A partitioned graph with an edge-cut of seven. Here, nine communications are incurred during parallel processing.in Figure 3. Here, three subdomains, A, B, and C are shown. The edge-cut of the (three-way) partitioningis seven. During parallel computation, the processor corresponding to subdomain A will need to send thedata for vertices 1 and 3 to the processor corresponding to subdomain B, and the data for vertex 4 to theprocessor corresponding to subdomain C. Similarly, B needs to send the data for 5 and 7 to A and the datafor 7 and 8 to C. Finally, C needs to send the data for 9 to B and the data for 10 to A. This equals nineunits of data to be sent, while the edge-cut is seven. The reason that edge-cut and total communicationvolume are not the same is because the edge-cut counts every edge cut, while data is required to be sentonly one time if two or more edges of a single vertex are cut by the same subdomain (as is the case, forexample, between vertex 3 and subdomain B in Figure 3). It should also be noted that total communicationvolume alone cannot accurately predict inter-processor communication overhead. A more precise measure isthe maximum time required by any of the processors to perform communication (because computation andcommunication occur in alternating phases). This depends upon a number of factors, including the amountof data to be sent out of any one processor, as well as the number of processors with which a processormust communicate. In particular, on message-passing architectures, minimizing the maximum number ofmessage startups that any one processor must perform can sometimes be more important than minimizingthe communications volume [34]. Nevertheless, there still tends to be a strong correlation between edge-cutsand inter-processor communication costs for graphs of uniform degree (i. e., graphs in which most verticeshave about the same number of edges). This is a typical characteristic of graphs derived from scienti�csimulations. For this reason, the traditional min-cut partitioning problem is a reasonable approximation tothe problem of minimizing the inter-processor communications that underly many scienti�c simulations.Computing a k-way Partitioning via Recursive Bisection Graphs are frequently partitioned into ksubdomains by recursively computing two-way partitionings (i. e., bisections) of the graph [6]. This methodrequires the computation of k�1 bisections. If k is not a power of two, then for each bisection, the appropriatesubdomain weights need to be speci�ed in order to ensure that the resulting k-way partitioning is balanced.It is known that for a large class of graphs derived from scienti�c simulations, recursive bisection algorithmsare able to compute k-way partitionings that are within a constant factor of the optimal solution [84].Furthermore, if the balance constraint is su�ciently relaxed, then recursive bisection methods can be usedto compute k-way partitionings that are within log p of the optimal for all graphs [84]. Since the directcomputation of a good k-way partitioning is harder in general than the computation of a good bisection(although both problems are NP-complete), recursive bisection has become a widely used technique.0.3 Static Graph Partitioning TechniquesThe graph partitioning problem is known to be NP-complete. Therefore, in general it is not possible to com-pute optimal partitionings for graphs of interesting size in a reasonable amount of time. This fact, combined

K. Schloegel, G. Karypis, V. Kumar ‘00

Great model? How often do we send
vertex 1 to B?

Perhaps: assign weight to vertices,
edges

Visualization Parallel Patterns

Partitioning

Spectral partitioning demo

Visualization Parallel Patterns

Partitioning

Metis demo

Visualization Parallel Patterns

Finer points

• What if # inputs 6= # outputs?

(→ hypergraphs)

• Might want to balance multiple objectives
• Types of work
• Types of communication

Software packages to look for:

• Zoltan (free, LGPL)

• PT-Scotch (free, copyleft)

• Metis (free to use, proprietary, some source available)

Visualization Parallel Patterns

Finer points

• What if # inputs 6= # outputs? (→ hypergraphs)

• Might want to balance multiple objectives
• Types of work
• Types of communication

Software packages to look for:

• Zoltan (free, LGPL)

• PT-Scotch (free, copyleft)

• Metis (free to use, proprietary, some source available)

Visualization Parallel Patterns

Outline

Tool of the day: 3D Visualization

Parallel Patterns
Partition

Obtaining partitions

Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

Pipelined Computation

y = fN(· · · f2(f1(x)) · · ·)
= (fN ◦ · · · ◦ f1)(x)

where N is fixed.

Visualization Parallel Patterns

Pipelined Computation: Graph

x y
f1 f1 f2 f3 f4 f6

Processor Assignment?

Visualization Parallel Patterns

Pipelined Computation: Graph

x y
f1 f1 f2 f3 f4 f6

Processor Assignment?

Visualization Parallel Patterns

Pipelined Computation: Examples

• Image processing

• Any multi-stage algorithm
• Pre/post-processing or I/O

• Out-of-Core algorithms

Specific simple examples:

• Sorting (insertion sort)

• Triangular linear system solve
(‘backsubstitution’)
• Key: Pass on values as soon as

they’re available

(will see more efficient algorithms for
both later)

Visualization Parallel Patterns

Pipelined Computation: Issues

• Non-optimal while pipeline fills or
empties

• Often communication-inefficient
• for large data

• Needs some attention to
synchronization, deadlock
avoidance

• Can accommodate some
asynchrony
But don’t want:
• Pile-up
• Starvation

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Outline

Tool of the day: 3D Visualization

Parallel Patterns
Partition

Obtaining partitions

Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)

where N is the input size.

Also known as. . .

• Lisp/Python function reduce (Scheme: fold)

• C++ STL std::accumulate

Visualization Parallel Patterns

Reduction

y = f (· · · f (f (x1, x2), x3), . . . , xN)

where N is the input size.

Also known as. . .

• Lisp/Python function reduce (Scheme: fold)

• C++ STL std::accumulate

Visualization Parallel Patterns

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

Painful! Not parallelizable.

Visualization Parallel Patterns

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

Painful! Not parallelizable.

Visualization Parallel Patterns

Approach to Reduction

f (
x ,
y)?

Can we do better?

“Tree” very imbalanced. What property
of f would allow ‘rebalancing’?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity

Visualization Parallel Patterns

Approach to Reduction

f (
x ,
y)?

Can we do better?

“Tree” very imbalanced. What property
of f would allow ‘rebalancing’?

f (f (x , y), z) = f (x , f (y , z))

Looks less improbable if we let
x ◦ y = f (x , y):

x ◦ (y ◦ z)) = (x ◦ y) ◦ z

Has a very familiar name: Associativity

Visualization Parallel Patterns

Reduction: A Better Graph

y

x0 x1 x2 x3 x4 x5 x6 x7

Processor allocation?

Visualization Parallel Patterns

Reduction: A Better Graph

y

x0 x1 x2 x3 x4 x5 x6 x7

Processor allocation?

Visualization Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• Single threads?

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping Reduction to the GPU

• Obvious: Want to use tree-based approach.

• Problem: Two scales, Work group and Grid
• Need to occupy both to make good use of the machine.

• In particular, need synchronization after each tree stage.

• Solution: Use a two-scale algorithm.

5

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation
into multiple kernel invocations

In the case of reductions, code for all levels is the
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

In particular: Use multiple grid invocations to achieve
inter-workgroup synchronization.

With material by M. Harris
(Nvidia Corp.)

Visualization Parallel Patterns

Mapping Reduction to the GPU

• Obvious: Want to use tree-based approach.

• Problem: Two scales, Work group and Grid
• Need to occupy both to make good use of the machine.

• In particular, need synchronization after each tree stage.

• Solution: Use a two-scale algorithm.

5

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation
into multiple kernel invocations

In the case of reductions, code for all levels is the
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

In particular: Use multiple grid invocations to achieve
inter-workgroup synchronization. With material by M. Harris

(Nvidia Corp.)

Visualization Parallel Patterns

Kernel V1

kernel void reduce0(global T ∗g idata , global T ∗g odata,
unsigned int n, local T∗ ldata)

{
unsigned int lid = get local id (0);
unsigned int i = get global id (0);

ldata [lid] = (i < n) ? g idata [i] : 0;
barrier (CLK LOCAL MEM FENCE);

for(unsigned int s=1; s < get local size (0); s ∗= 2)
{

if ((lid % (2∗s)) == 0)
ldata [lid] += ldata[lid + s];

barrier (CLK LOCAL MEM FENCE);
}

if (lid == 0) g odata[get group id(0)] = ldata [0];
}

Visualization Parallel Patterns

Interleaved Addressing

8

Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 2 4 6 8 10 12 14

22111179-3-558-2-2-17111Values

0 4 8 12

22111379-3458-26-17118Values

0 8

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread

IDs

Step 1

Stride 1

Step 2
Stride 2

Step 3

Stride 4

Step 4
Stride 8

Thread
IDs

Thread

IDs

Thread
IDs

Issue: Slow modulo, Divergence

With material by M. Harris
(Nvidia Corp.)

Visualization Parallel Patterns

Interleaved Addressing

8

Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 2 4 6 8 10 12 14

22111179-3-558-2-2-17111Values

0 4 8 12

22111379-3458-26-17118Values

0 8

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread

IDs

Step 1

Stride 1

Step 2
Stride 2

Step 3

Stride 4

Step 4
Stride 8

Thread
IDs

Thread

IDs

Thread
IDs

Issue: Slow modulo, Divergence

With material by M. Harris
(Nvidia Corp.)

Visualization Parallel Patterns

Kernel V2

kernel void reduce2(global T ∗g idata , global T ∗g odata,
unsigned int n, local T∗ ldata)

{
unsigned int lid = get local id (0);
unsigned int i = get global id (0);

ldata [lid] = (i < n) ? g idata [i] : 0;
barrier (CLK LOCAL MEM FENCE);

for(unsigned int s= get local size (0)/2; s>0; s>>=1)
{

if (lid < s)
ldata [lid] += ldata[lid + s];

barrier (CLK LOCAL MEM FENCE);
}

if (lid == 0) g odata[get local size (0)] = ldata [0];
}

Visualization Parallel Patterns

Sequential Addressing

14

Parallel Reduction: Sequential AddressingParallel Reduction: Sequential Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3

Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

Sequential addressing is conflict free

Better! But still not “efficient”.

Only half of all work items after first round,
then a quarter, . . .

With material by M. Harris
(Nvidia Corp.)

Visualization Parallel Patterns

Sequential Addressing

14

Parallel Reduction: Sequential AddressingParallel Reduction: Sequential Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3

Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

Sequential addressing is conflict freeBetter! But still not “efficient”.

Only half of all work items after first round,
then a quarter, . . . With material by M. Harris

(Nvidia Corp.)

Visualization Parallel Patterns

Recap: Parallel Complexity

Distinguish:

• Time on T processors: TP

• Step Complexity/Span T∞: Minimum number of steps
taken if an infinite number of processors are available

• Work per step St

• Work Complexity/Work T1 =
∑T∞

t=1 St : Total number of
operations performed

• Parallelism T1/T∞: average amount of work along span
• P > T1/T∞ doesn’t make sense.

Algorithm-specific!

Visualization Parallel Patterns

Parallel Complexity for Reduction

Number of Items N
Actual work to be done: W = O(N) additions.

Step Complexity: Let d = dlog2Ne. Then T∞ = d , St = O(2d−t).

Work Complexity:

T1 =
T∑
t=1

St = O

(
T∑
t=1

2d−t

)
= O(2d) = O(N)

“Work-efficient:” T1 ∼W .

Visualization Parallel Patterns

Parallel Complexity for Reduction

Number of Items N
Actual work to be done: W = O(N) additions.

Step Complexity: Let d = dlog2Ne. Then T∞ = d , St = O(2d−t).

Work Complexity:

T1 =
T∑
t=1

St = O

(
T∑
t=1

2d−t

)
= O(2d) = O(N)

“Work-efficient:” T1 ∼W .

Visualization Parallel Patterns

Greedy Scheduling

Theorem (Graham ‘68, Brent ‘75)

A parallel algorithm with span T∞ and work complexity T1 can be
executed on a shared-memory machine with P processors in no
more than

TP ≤
T1

P
+ T∞

steps.

Observations:

• Think of T∞ as the length of the “critical path”.

• The first summand can be made to go away by increasing P.

• Only valid for shared-memory.

Estimate for P = 1?

Proof sketch?

What about reduction?

Visualization Parallel Patterns

Greedy Scheduling

Theorem (Graham ‘68, Brent ‘75)

A parallel algorithm with span T∞ and work complexity T1 can be
executed on a shared-memory machine with P processors in no
more than

TP ≤
T1

P
+ T∞

steps.

Observations:

• Think of T∞ as the length of the “critical path”.

• The first summand can be made to go away by increasing P.

• Only valid for shared-memory.

Estimate for P = 1?

Proof sketch?

What about reduction?

What is P for a GPU?

Visualization Parallel Patterns

Kernel V3 Part 1

kernel void reduce6(global T ∗g idata , global T ∗g odata,
unsigned int n, volatile local T∗ ldata)

{
unsigned int lid = get local id (0);
unsigned int i = get group id(0)∗(

get local size (0)∗2) + get local id (0);
unsigned int gridSize = GROUP SIZE∗2∗get num groups(0);
ldata [lid] = 0;

while (i < n)
{

ldata [lid] += g idata[i];
if (i + GROUP SIZE < n)

ldata [lid] += g idata[i+GROUP SIZE];
i += gridSize;

}
barrier (CLK LOCAL MEM FENCE);

Visualization Parallel Patterns

Kernel V3 Part 2

if (GROUP SIZE >= 512)
{

if (lid < 256) { ldata[lid] += ldata[lid + 256]; }
barrier (CLK LOCAL MEM FENCE);

}
// ...
if (GROUP SIZE >= 128)
{ /∗ ... ∗/ }

if (lid < 32)
{

if (GROUP SIZE >= 64) { ldata[lid] += ldata[lid + 32]; }
if (GROUP SIZE >= 32) { ldata[lid] += ldata[lid + 16]; }
// ...
if (GROUP SIZE >= 2) { ldata[lid] += ldata[lid + 1]; }

}

if (lid == 0) g odata[get group id(0)] = ldata [0];
}

Visualization Parallel Patterns

Performance Comparison

36

Performance ComparisonPerformance Comparison

0.01

0.1

1

10

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

Elements

T
im

e
 (

m
s

)

1: Interleaved Addressing:

Divergent Branches

2: Interleaved Addressing:

Bank Conflicts

3: Sequential Addressing

4: First add during global

load

5: Unroll last warp

6: Completely unroll

7: Multiple elements per

thread (max 64 blocks)

With material by M. Harris
(Nvidia Corp.)

Visualization Parallel Patterns

Reduction: Examples

• Sum, Inner Product, Norm
• Occurs in iterative methods

• Minimum, Maximum

• Data Analysis
• Evaluation of Monte Carlo

Simulations

• List Concatenation, Set Union

• Matrix-Vector product (but. . .)

Visualization Parallel Patterns

Reduction: Issues

• When adding: floating point
cancellation?

• Serial order goes faster:
can use registers for intermediate
results

• Requires availability of neutral
element

• GPU-Reduce: Optimization
sensitive to data type

Visualization Parallel Patterns

Outline

Tool of the day: 3D Visualization

Parallel Patterns
Partition

Obtaining partitions

Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

Map-Reduce

Sounds like this:

y = f (· · · f (f (g(x1), g(x2)),

g(x3)), . . . , g(xN))
where N is the input size.

• Lisp naming, again

• Mild generalization of reduction

But no. Not even close.

Visualization Parallel Patterns

Map-Reduce

Sounds like this:

y = f (· · · f (f (g(x1), g(x2)),

g(x3)), . . . , g(xN))
where N is the input size.

• Lisp naming, again

• Mild generalization of reduction

But no. Not even close.

Visualization Parallel Patterns

Map-Reduce: Graph

y1

x0

g

x1

g

x2

g

x3

g

y2

x4

g

x5

g

x6

g

x7

g

Visualization Parallel Patterns

MapReduce: Discussion

MapReduce ≥ map + reduce:

• Used by Google (and many others) for
large-scale data processing

• Map generates (key, value) pairs
• Reduce operates only on pairs with

identical keys
• Remaining output sorted by key

• Represent all data as character strings
• User must convert to/from internal repr.

• Messy implementation
• Parallelization, fault tolerance, monitoring,

data management, load balance, re-run
“stragglers”, data locality

• Works for Internet-size data

• Simple to use even for inexperienced users

Visualization Parallel Patterns

MapReduce: Examples

• String search

• (e.g. URL) Hit count from Log

• Reverse web-link graph
• desired: (target URL, sources)

• Sort

• Indexing
• desired: (word, document IDs)

• Machine Learning, Clustering, . . .

Visualization Parallel Patterns

Outline

Tool of the day: 3D Visualization

Parallel Patterns
Partition

Obtaining partitions

Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

Scan

y1 = x1

y2 = f (y1, x2)
... = ...

yN = f (yN−1, xN)
where N is the input size. (Think: N large, f (x , y) = x + y)

• Prefix Sum/Cumulative Sum

• Abstract view of: loop-carried dependence

• Also possible: Segmented Scan

Visualization Parallel Patterns

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

This can’t possibly be parallelized.
Or can it?

Visualization Parallel Patterns

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

This can’t possibly be parallelized.
Or can it?

Visualization Parallel Patterns

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

Id

y2

Id

y3

Id

y4

Id y5

Id

Id

This can’t possibly be parallelized.
Or can it?
Again: Need assumptions on f .
Associativity, commutativity.

Visualization Parallel Patterns

Scan: Implementation

Work-efficient?

Visualization Parallel Patterns

Scan: Implementation

Work-efficient?

Visualization Parallel Patterns

Scan: Implementation II

Two sweeps: Upward, downward,
both tree-shape

On upward sweep:

• Get values L and R from left and right
child

• Save L in local variable Mine

• Compute Tmp = L + R and pass to parent

On downward sweep:

• Get value Tmp from parent

• Send Tmp to left child

• Sent Tmp+Mine to right child

Work-efficient?
Span rel. to first attempt?

Visualization Parallel Patterns

Scan: Implementation II

Two sweeps: Upward, downward,
both tree-shape

On upward sweep:

• Get values L and R from left and right
child

• Save L in local variable Mine

• Compute Tmp = L + R and pass to parent

On downward sweep:

• Get value Tmp from parent

• Send Tmp to left child

• Sent Tmp+Mine to right childWork-efficient?
Span rel. to first attempt?

Visualization Parallel Patterns

Scan: Examples

• Anything with a loop-carried
dependence

• One row of Gauss-Seidel

• One row of triangular solve

• Segment numbering if boundaries
are known

• Low-level building block for many
higher-level algorithms algorithms

• FIR/IIR Filtering

• G.E. Blelloch:
Prefix Sums and their Applications

Visualization Parallel Patterns

http://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

Scan: Issues

• Subtlety: Inclusive/Exclusive Scan

• Pattern sometimes hard to
recognize
• But shows up surprisingly often
• Need to prove

associativity/commutativity

• Useful in Implementation:
algorithm cascading
• Do sequential scan on parts, then

parallelize at coarser granularities

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Challenge

Sort (fixed-size) integers using
scan

Visualization Parallel Patterns

Outline

Tool of the day: 3D Visualization

Parallel Patterns
Partition

Obtaining partitions

Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

Divide and Conquer

yi = fi(x1, . . . , xN)
for i ∈ {1, . . . ,M}.

Main purpose: A way of
partitioning up fully
dependent tasks.

x0 x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x3 x4 x5 x6 x7

u0 u1 u2 u3 u4 u5 u6 u7

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

v0 v1 v2 v3 v4 v5 v6 v7

w0 w1 w2 w3 w4 w5 w6 w7

Processor allocation?

Visualization Parallel Patterns

Divide and Conquer

yi = fi(x1, . . . , xN)
for i ∈ {1, . . . ,M}.

Main purpose: A way of
partitioning up fully
dependent tasks.

x0 x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x3 x4 x5 x6 x7

u0 u1 u2 u3 u4 u5 u6 u7

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

v0 v1 v2 v3 v4 v5 v6 v7

w0 w1 w2 w3 w4 w5 w6 w7
Processor allocation?

Visualization Parallel Patterns

Divide and Conquer: Examples

• GEMM, TRMM, TRSM, GETRF
(LU)

• FFT

• Sorting: Bucket sort, Merge sort

• N-Body problems (Barnes-Hut,
FMM)

• Adaptive Integration

More fun with work and span:
D&C analysis lecture

Visualization Parallel Patterns

http://supertech.csail.mit.edu/cilk/lecture-2.pdf

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Divide and Conquer: Issues

• “No idea how to parallelize that”
• → Try D&C

• Non-optimal during partition, merge
• But: Does not matter if deep levels do

heavy enough processing

• Subtle to map to fixed-width machines
(e.g. GPUs)
• Varying data size along tree → Scan!

• Bookkeeping nontrivial for non-2n sizes

• Side benefit: D&C is generally
cache-friendly

Visualization Parallel Patterns

Outline

Tool of the day: 3D Visualization

Parallel Patterns
Partition

Obtaining partitions

Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Visualization Parallel Patterns

General Dependency Graphs

B = f(A)
C = g(B)
E = f(C)
F = h(C)
G = g(E,F)
P = p(B)
Q = q(B)
R = r(G,P,Q)

A

C

B

E

G

F Q

P

R

h

r

g

rg

r

g

q

f

p

f

Great: All patterns discussed so far can
be reduced to this one.

Visualization Parallel Patterns

General Dependency Graphs

B = f(A)
C = g(B)
E = f(C)
F = h(C)
G = g(E,F)
P = p(B)
Q = q(B)
R = r(G,P,Q)

A

C

B

E

G

F Q

P

R

h

r

g

rg

r

g

q

f

p

f

Great: All patterns discussed so far can
be reduced to this one.

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Mapping to Mechanisms

• OpenMP?

• MPI?

• MPI: Larger than # ranks?

• GPU?

Visualization Parallel Patterns

Cilk

cilk int fib (int n)
{

if (n < 2) return n;
else
{
int x, y;

x = spawn fib (n−1);
y = spawn fib (n−2);

sync;

return (x+y);
}
}

Features:

• Adds keywords spawn,
sync, (inlet, abort)

• Remove keywords → valid
(seq.) C

Timeline:

• Developed at MIT, starting
in ‘94

• Commercialized in ‘06

• Bought by Intel in ‘09

• Available in the Intel
Compilers

Efficient implementation?

Visualization Parallel Patterns

Cilk

cilk int fib (int n)
{

if (n < 2) return n;
else
{
int x, y;

x = spawn fib (n−1);
y = spawn fib (n−2);

sync;

return (x+y);
}
}

Features:

• Adds keywords spawn,
sync, (inlet, abort)

• Remove keywords → valid
(seq.) C

Timeline:

• Developed at MIT, starting
in ‘94

• Commercialized in ‘06

• Bought by Intel in ‘09

• Available in the Intel
Compilers

Efficient implementation?

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 46© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP
Spawn!

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 47© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP
Spawn!Spawn!

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 48© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP
Return!

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 49© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP
Return!

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 50© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP

When a processor runs out of
work, it steals a thread from the
top of a random victim’s deque.

Steal!

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 51© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP

When a processor runs out of
work, it steals a thread from the
top of a random victim’s deque.

Steal!

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 52© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP

When a processor runs out of
work, it steals a thread from the
top of a random victim’s deque.

With material by
Charles E. Leiserson (MIT)

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 53© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP

When a processor runs out of
work, it steals a thread from the
top of a random victim’s deque.

Spawn!

With material by
Charles E. Leiserson (MIT)

Why is Work-Stealing better
than a Task Queue?

Visualization Parallel Patterns

Work-Stealing

July 13, 2006 53© 2006 Charles E. Leiserson Multithreaded Programming in Cilk — LECTURE 1

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

PP PP PPPP

When a processor runs out of
work, it steals a thread from the
top of a random victim’s deque.

Spawn!

With material by
Charles E. Leiserson (MIT)

Why is Work-Stealing better
than a Task Queue?

Visualization Parallel Patterns

General Graphs: Implementations

• Intel Cilk(+) (also: vector math)

• OpenCL (“Events”, Out-of-order queues)

• Intel Thread Building Blocks

• StarPU

• (Charm++)

• Many more

Visualization Parallel Patterns

http://cilkplus.org/
http://threadingbuildingblocks.org/
http://runtime.bordeaux.inria.fr/StarPU/
http://charm.cs.illinois.edu/

General Graphs: Issues

• Model can accommodate ‘speculative
execution’
• Launch many different ‘approaches’
• Abort the others as soon as one

satisfactory one emerges.

• Discover dependencies, make up schedule
at run-time
• Usually less efficient than the case of

known dependencies
• Map-Reduce absorbs many cases that

would otherwise be general

• On-line scheduling: complicated

• Not a good fit if a more specific pattern
applies

• Good if inputs/outputs/functions are
(somewhat) heavy-weight

Visualization Parallel Patterns

Questions?

?

Visualization Parallel Patterns

Image Credits

• Pipe: sxc.hu/mterraza
• Tree: sxc.hu/bertvthul
• Radar: sxc.hu/KimPouss

• Quadtree: flickr.com/ethanhein

Visualization Parallel Patterns

	Tool of the day: 3D Visualization
	Parallel Patterns
	Partition
	Pipelines
	Reduction
	Map-Reduce
	Scan
	Divide-and-Conquer
	General Data Dependencies

