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Admin Bits

• New here? Please send email

• Started looking for a final project yet?

• HW1 not found → email

• Grading

• Overall pace

• HW3 out on the weekend
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HW2 problem 2

Demo time
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OpenMP sync primitives

• Critical section

• Locks

• Atomics

• Update: x++;
• Capture: v = x++;
• Structured: v = x; x —= expr; (“Test-and-set”)
• Compare-and-swap (not in OpenMP)
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OpenMP corner case pop quiz 1

• May OpenMP directives be nested?

• What is an orphaned directive?
• What is close nesting?
• What is a ‘dynamic extent’ of a region?

• May a worksharing region be closely nested inside another
one?

• What happens if I nest two critical regions of the same
name?
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OpenMP corner case pop quiz 2

• Corresponding getter function for omp set num threads()?

• Relation between omp set dynamic() and
schedule(dynamic)?

• What is wrong with this statement?

A barrier region may not be closely nested inside a
worksharing region. (from the OpenMP tutorial)

• What threads does a barrier bind to?

• What threads does a critical region bind to?
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CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.
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“CPU-style” Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

CPU-“style” cores 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

Out-of-order control logic 

Fancy branch predictor 

Memory pre-fetcher 

Data cache 
(A big one) 

13 

Credit: Kayvon Fatahalian (Stanford)
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Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Slimming down 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

Idea #1:  

Remove components that 
help a single instruction 
stream run fast  

14 

Credit: Kayvon Fatahalian (Stanford)
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More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Two cores   (two fragments in parallel) 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

<diffuseShader>: 

sample r0, v4, t0, s0 

mul  r3, v0, cb0[0] 

madd r3, v1, cb0[1], r3 

madd r3, v2, cb0[2], r3 

clmp r3, r3, l(0.0), l(1.0) 

mul  o0, r0, r3 

mul  o1, r1, r3 

mul  o2, r2, r3 

mov  o3, l(1.0) 

fragment 1 

<diffuseShader>: 

sample r0, v4, t0, s0 

mul  r3, v0, cb0[0] 

madd r3, v1, cb0[1], r3 

madd r3, v2, cb0[2], r3 

clmp r3, r3, l(0.0), l(1.0) 

mul  o0, r0, r3 

mul  o1, r1, r3 

mul  o2, r2, r3 

mov  o3, l(1.0) 

fragment 2 
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Credit: Kayvon Fatahalian (Stanford)
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. . . again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Four cores   (four fragments in parallel) 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

ALU 
(Execute) 
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Decode 

Execution 
Context 

ALU 
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Fetch/ 
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Execution 
Context 
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Credit: Kayvon Fatahalian (Stanford)
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. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Sixteen cores   (sixteen fragments in parallel) 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

16 cores = 16 simultaneous instruction streams 
17 

Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent
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Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 
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Decode 
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(Execute) 

Execution 
Context 

19 

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)
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Add ALUs 

Fetch/ 
Decode 

Idea #2: 

Amortize cost/complexity of 
managing an instruction 
stream across many ALUs 

ALU 1 ALU 2 ALU 3 ALU 4 

ALU 5 ALU 6 ALU 7 ALU 8 

SIMD processing Ctx Ctx Ctx Ctx 

Ctx Ctx Ctx Ctx 

Shared Ctx Data  
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Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

128 fragments in parallel  

= 16 simultaneous instruction streams 
16 cores = 128 ALUs 

24 
Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?
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Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

But what about branches? 

ALU 1 ALU 2 . . .  ALU 8 . . .  
Time 

(clocks) 

2 ...  1 ... 8 

if (x > 0) { 

} else { 

} 

<unconditional 
shader code> 

<resume unconditional 
shader code> 

y = pow(x, exp); 

y *= Ks; 

refl = y + Ka;   

x = 0;  

refl = Ka;   

26 

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization



Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

But what about branches? 

ALU 1 ALU 2 . . .  ALU 8 . . .  
Time 

(clocks) 

2 ...  1 ... 8 
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shader code> 

<resume unconditional 
shader code> 

y = pow(x, exp); 

y *= Ks; 

refl = y + Ka;   

x = 0;  

refl = Ka;   

T T T F F F F F 

27 

Credit: Kayvon Fatahalian (Stanford)
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But what about branches? 

ALU 1 ALU 2 . . .  ALU 8 . . .  
Time 

(clocks) 

2 ...  1 ... 8 

if (x > 0) { 

} else { 

} 

<unconditional 
shader code> 

<resume unconditional 
shader code> 

y = pow(x, exp); 

y *= Ks; 

refl = y + Ka;   

x = 0;  

refl = Ka;   

T T T F F F F F 

Not all ALUs do useful work!  
Worst case: 1/8 performance 

28 

Credit: Kayvon Fatahalian (Stanford)
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(clocks) 

2 ...  1 ... 8 

if (x > 0) { 

} else { 

} 

<unconditional 
shader code> 

<resume unconditional 
shader code> 

y = pow(x, exp); 

y *= Ks; 

refl = y + Ka;   

x = 0;  

refl = Ka;   
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Recent Processor Architecture

• Commodity chips

• “Infinitely” many cores

• “Infinite” vector width

• Must hide memory latency
(→ ILP, SMT)

• Compute bandwidth
� Memory bandwidth

• Bandwidth only achievable
by homogeneity

Nv GT200
(2008)

Nv Fermi
(2010)

Intel IVB
(2012)

AMD Tahiti
(2012)

Nv GK110
(2012?)
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Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization



Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization



Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization



Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization



Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization



Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization



Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization



Synchronization

What is a Memory Fence?

17

write 18
read

17
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Synchronization

What is a Memory Fence? An ordering restriction for memory
access.
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Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);
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Questions?

?
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Image Credits

• Isaiah die shot: VIA Technologies

HW2 Chips for Throughput Synchronization


	HW2
	Chips for Throughput
	Synchronization

