
High-Performance Scientific Computing
Lecture 3: OpenCL

MATH-GA 2011 / CSCI-GA 2945 · September 19, 2012

HW2 Chips for Throughput Synchronization

Today

HW2

Chips for Throughput

Synchronization

HW2 Chips for Throughput Synchronization

Admin Bits

• New here? Please send email

• Started looking for a final project yet?

• HW1 not found → email

• Grading

• Overall pace

• HW3 out on the weekend

HW2 Chips for Throughput Synchronization

Admin Bits

• New here? Please send email

• Started looking for a final project yet?

• HW1 not found → email

• Grading

• Overall pace

• HW3 out on the weekend

HW2 Chips for Throughput Synchronization

Admin Bits

• New here? Please send email

• Started looking for a final project yet?

• HW1 not found → email

• Grading

• Overall pace

• HW3 out on the weekend

HW2 Chips for Throughput Synchronization

Admin Bits

• New here? Please send email

• Started looking for a final project yet?

• HW1 not found → email

• Grading

• Overall pace

• HW3 out on the weekend

HW2 Chips for Throughput Synchronization

Admin Bits

• New here? Please send email

• Started looking for a final project yet?

• HW1 not found → email

• Grading

• Overall pace

• HW3 out on the weekend

HW2 Chips for Throughput Synchronization

Admin Bits

• New here? Please send email

• Started looking for a final project yet?

• HW1 not found → email

• Grading

• Overall pace

• HW3 out on the weekend

HW2 Chips for Throughput Synchronization

Outline

HW2

Chips for Throughput

Synchronization

HW2 Chips for Throughput Synchronization

HW2 problem 2

Demo time

HW2 Chips for Throughput Synchronization

OpenMP sync primitives

• Critical section

• Locks

• Atomics

• Update: x++;
• Capture: v = x++;
• Structured: v = x; x —= expr; (“Test-and-set”)
• Compare-and-swap (not in OpenMP)

HW2 Chips for Throughput Synchronization

OpenMP sync primitives

• Critical section

• Locks

• Atomics

• Update: x++;
• Capture: v = x++;
• Structured: v = x; x —= expr; (“Test-and-set”)
• Compare-and-swap (not in OpenMP)

HW2 Chips for Throughput Synchronization

OpenMP sync primitives

• Critical section

• Locks

• Atomics

• Update: x++;
• Capture: v = x++;
• Structured: v = x; x —= expr; (“Test-and-set”)
• Compare-and-swap (not in OpenMP)

HW2 Chips for Throughput Synchronization

OpenMP sync primitives

• Critical section

• Locks

• Atomics
• Update: x++;

• Capture: v = x++;
• Structured: v = x; x —= expr; (“Test-and-set”)
• Compare-and-swap (not in OpenMP)

HW2 Chips for Throughput Synchronization

OpenMP sync primitives

• Critical section

• Locks

• Atomics
• Update: x++;
• Capture: v = x++;

• Structured: v = x; x —= expr; (“Test-and-set”)
• Compare-and-swap (not in OpenMP)

HW2 Chips for Throughput Synchronization

OpenMP sync primitives

• Critical section

• Locks

• Atomics
• Update: x++;
• Capture: v = x++;
• Structured: v = x; x —= expr; (“Test-and-set”)

• Compare-and-swap (not in OpenMP)

HW2 Chips for Throughput Synchronization

OpenMP sync primitives

• Critical section

• Locks

• Atomics
• Update: x++;
• Capture: v = x++;
• Structured: v = x; x —= expr; (“Test-and-set”)
• Compare-and-swap (not in OpenMP)

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 1

• May OpenMP directives be nested?

• What is an orphaned directive?
• What is close nesting?
• What is a ‘dynamic extent’ of a region?

• May a worksharing region be closely nested inside another
one?

• What happens if I nest two critical regions of the same
name?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 1

• May OpenMP directives be nested?
• What is an orphaned directive?

• What is close nesting?
• What is a ‘dynamic extent’ of a region?

• May a worksharing region be closely nested inside another
one?

• What happens if I nest two critical regions of the same
name?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 1

• May OpenMP directives be nested?
• What is an orphaned directive?
• What is close nesting?

• What is a ‘dynamic extent’ of a region?

• May a worksharing region be closely nested inside another
one?

• What happens if I nest two critical regions of the same
name?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 1

• May OpenMP directives be nested?
• What is an orphaned directive?
• What is close nesting?
• What is a ‘dynamic extent’ of a region?

• May a worksharing region be closely nested inside another
one?

• What happens if I nest two critical regions of the same
name?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 1

• May OpenMP directives be nested?
• What is an orphaned directive?
• What is close nesting?
• What is a ‘dynamic extent’ of a region?

• May a worksharing region be closely nested inside another
one?

• What happens if I nest two critical regions of the same
name?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 1

• May OpenMP directives be nested?
• What is an orphaned directive?
• What is close nesting?
• What is a ‘dynamic extent’ of a region?

• May a worksharing region be closely nested inside another
one?

• What happens if I nest two critical regions of the same
name?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 2

• Corresponding getter function for omp set num threads()?

• Relation between omp set dynamic() and
schedule(dynamic)?

• What is wrong with this statement?

A barrier region may not be closely nested inside a
worksharing region. (from the OpenMP tutorial)

• What threads does a barrier bind to?

• What threads does a critical region bind to?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 2

• Corresponding getter function for omp set num threads()?

• Relation between omp set dynamic() and
schedule(dynamic)?

• What is wrong with this statement?

A barrier region may not be closely nested inside a
worksharing region. (from the OpenMP tutorial)

• What threads does a barrier bind to?

• What threads does a critical region bind to?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 2

• Corresponding getter function for omp set num threads()?

• Relation between omp set dynamic() and
schedule(dynamic)?

• What is wrong with this statement?

A barrier region may not be closely nested inside a
worksharing region. (from the OpenMP tutorial)

• What threads does a barrier bind to?

• What threads does a critical region bind to?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 2

• Corresponding getter function for omp set num threads()?

• Relation between omp set dynamic() and
schedule(dynamic)?

• What is wrong with this statement?

A barrier region may not be closely nested inside a
worksharing region. (from the OpenMP tutorial)

• What threads does a barrier bind to?

• What threads does a critical region bind to?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 2

• Corresponding getter function for omp set num threads()?

• Relation between omp set dynamic() and
schedule(dynamic)?

• What is wrong with this statement?

A barrier region may not be closely nested inside a
worksharing region. (from the OpenMP tutorial)

• What threads does a barrier bind to?

• What threads does a critical region bind to?

HW2 Chips for Throughput Synchronization

OpenMP corner case pop quiz 2

• Corresponding getter function for omp set num threads()?

• Relation between omp set dynamic() and
schedule(dynamic)?

• What is wrong with this statement?

A barrier region may not be closely nested inside a
worksharing region. (from the OpenMP tutorial)

• What threads does a barrier bind to?

• What threads does a critical region bind to?

HW2 Chips for Throughput Synchronization

Outline

HW2

Chips for Throughput

Synchronization

HW2 Chips for Throughput Synchronization

CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.

HW2 Chips for Throughput Synchronization

“CPU-style” Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

CPU-“style” cores

ALU
(Execute)

Fetch/
Decode

Execution
Context

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache
(A big one)

13

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Slimming down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1:

Remove components that
help a single instruction
stream run fast

14

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Two cores (two fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

15

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

. . . again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Four cores (four fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

16

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17

Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

HW2 Chips for Throughput Synchronization

. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17

Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

HW2 Chips for Throughput Synchronization

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24
Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

HW2 Chips for Throughput Synchronization

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24
Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

HW2 Chips for Throughput Synchronization

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24
Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

HW2 Chips for Throughput Synchronization

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

26

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

27

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

Not all ALUs do useful work!
Worst case: 1/8 performance

28

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

29

Credit: Kayvon Fatahalian (Stanford)

HW2 Chips for Throughput Synchronization

Recent Processor Architecture

• Commodity chips

• “Infinitely” many cores

• “Infinite” vector width

• Must hide memory latency
(→ ILP, SMT)

• Compute bandwidth
� Memory bandwidth

• Bandwidth only achievable
by homogeneity

Nv GT200
(2008)

Nv Fermi
(2010)

Intel IVB
(2012)

AMD Tahiti
(2012)

Nv GK110
(2012?)

HW2 Chips for Throughput Synchronization

Outline

HW2

Chips for Throughput

Synchronization

HW2 Chips for Throughput Synchronization

Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization

Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization

Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization

Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization

Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization

Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization

Synchronization

What is a Barrier?

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence?

17

write 18
read

17

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence?

17

write 18

read
17

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence?

17

write 18
read

17

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence?

17

write 18
read

17

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence?

17

write 18

read
17

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence?

18

write 18

read
17

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence?

18

write 18
read

17

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read

18

HW2 Chips for Throughput Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

HW2 Chips for Throughput Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

HW2 Chips for Throughput Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible!

Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

HW2 Chips for Throughput Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

HW2 Chips for Throughput Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

HW2 Chips for Throughput Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected

Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

HW2 Chips for Throughput Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

HW2 Chips for Throughput Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

HW2 Chips for Throughput Synchronization

Questions?

?

HW2 Chips for Throughput Synchronization

Image Credits

• Isaiah die shot: VIA Technologies

HW2 Chips for Throughput Synchronization

	HW2
	Chips for Throughput
	Synchronization

