Quadrature by Expansion

Andreas Klöckner

Computer Science \cdot UIUC

November 12, 2013

Thanks

- Leslie Greengard (NYU)
- Alex Barnett (Dartmouth)
- Michael O'Neil (NYU)
- Zydrunas Gimbutas (NIST)

1 Introduction

- 2 Developing QBX
- 3 Method design
- 4 Experimental results

1 Introduction

- Method vs Machine
- BIEs for PDEs
- Existing Approaches to Quadrature

2 Developing QBX

3 Method design

4 Experimental results

1 Introduction

Method vs Machine

- BIEs for PDEs
- Existing Approaches to Quadrature

2 Developing QBX

- 3 Method design
- 4 Experimental results

CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008)

Improving matters for number crunching

Latency-constrained machine

Improving matters for number crunching

X Latency-constrained machine

Improving matters for number crunching

X Latency-constrained machine

✓ Throughput-constrained machine

Recent Processor Architecture

- Massively concurrent
 - ILP, SMT for (memory) latency
 - parallel by SIMD
 - parallel across cores

- Rarely flop-limited
- Limited by data motion

Nv Fermi (2010)

AMD Tahiti (2012)

Nv GK2 (2012

Andreas Klöckner

Quadrature by Expansion

Computational wish list for PDE schemes

A method and its algorithm should...

- admit massive concurrency
- provide a match for hierarchical concurrency
- have a high computation/access ratio ('intensity')

use minimal storage

Application-driven wish list

- Unstructured geometries
 - Adaptable to many engineering problems
 - Compatible with adaptive discretization
- General-purpose

 (as much as possible—in PDE, BCs, ...)
- Robust
- Well-conditioned
- High order
 - Also in geometry representation

Order p: Error bounded as

$$\|u_h-u\|\leq Ch^p$$

Order p: Error bounded as

$$\|u_h-u\|\leq Ch^p$$

Thought experiment:

First order	Fifth order
1,000 DoFs $pprox$ 1,000 triangles	1,000 DoFs $pprox$ 66 triangles
Error: 0.1	Error: 0.1

Order p: Error bounded as

$$\|u_h-u\|\leq Ch^p$$

Thought experiment:

First order	Fifth order
1,000 DoFs $pprox$ 1,000 triangles	1,000 DoFs $pprox$ 66 triangles
Error: 0.1	Error: 0.1
Error: 0.01 @	Error: 0.01 @
100,000 DoFs	1,800 DoFs
pprox 100,000 triangles	pprox 120 triangles

Order *p*: Error bounded as

 $||u_h|$

Thought experiment:

Want $p \geq 3$ available.

Assumption: Solution sufficiently smooth

Ideally: p chosen by user

First order	Fifth order
1,000 DoFs $pprox$ 1,000 triangles	1,000 DoFs $pprox$ 66 triangles
Error: 0.1	Error: 0.1
Error: 0.01 @	Error: 0.01 @
100,000 DoFs	1,800 DoFs
pprox 100,000 triangles	pprox 120 triangles

Introduction QBX Design Results Conclusion	ns Machines BIEs for PDEs Existing Approaches
Why high order?	Want $p \ge 3$ available.
Order <i>p</i> : Error bounded as	Assumption: Solution suffi- ciently smooth
<i>u_h</i> -	Ideally: <i>p</i> chosen by user
 Also beneficial for modern machines: More accuracy with fewer degrees of freedom Fewer degrees of freedon needed for given accura More operations on less data Exploit architecturally 'free' flops 	th order $00 \text{ DoFs} \approx 66 \text{ triangles}$ for: 0.1 or: 0.01 @ 300 DoFs 120 triangles

1 Introduction

Method vs Machine

BIEs for PDEs

Existing Approaches to Quadrature

2 Developing QBX

- 3 Method design
- 4 Experimental results

Fundamental Solutions

Laplace Equation

Monopole

Fundamental Solutions

Laplace EquationHelmholtz Equation $\Delta u = 0$ $\Delta u + k^2 u = 0$ MonopoleMonopole

Fundamental Solutions

Fundamental Solutions

Fundamental Solutions

Building Solutions

Main question for numerical solution of PDEs:

How is the solution represented?

Our choice here: *Sums of fundamental solutions*

$$\tilde{u}(x) = \sum_{i=1}^{N} G(|x-y_i|)\sigma_i$$

- Is the solution reachable in this way?Uniqueness?
- Linearity \rightarrow must satisfy PDE
- Boundary conditions: not necessarily

Layer Potentials

$$(S_k\sigma)(x) := \int_{\Gamma} G_k(x-y)\sigma(y)ds_y$$

$$(S'_k\sigma)(x) := n \cdot \nabla_x PV \int_{\Gamma} G_k(x-y)\sigma(y)ds_y$$

$$(D_k\sigma)(x) := PV \int_{\Gamma} n \cdot \nabla_y G_k(x-y)\sigma(y)ds_y$$

$$(D'_k\sigma)(x) := n \cdot \nabla_x f.p. \int_{\Gamma} n \cdot \nabla_y G_k(x-y)\sigma(y)ds_y$$

- Operators-map function σ on Γ to...
 - ... function on \mathbb{R}^n
 - ... function on Γ (in particular)
- S'' (and higher) analogously
- Called layer potentials
- G_k is the Helmholtz kernel ($k = 0 \rightarrow Laplace$)

Example: Integral Equations for Maxwell's

Want to solve the

- time-harmonic
- linear
- isotropic

Maxwell's equations

- for the scattered field response (to a given incoming field)
- in an exterior domain
- with a metallic scatterer.

Integral Equations for Maxwell's

Use:

- Vector potential $H = \nabla \times A$ with $\triangle A + k^2 A = 0$
- Integral representation for vector potential

$$A(x) = (S_k J^s)(x) = \frac{1}{4\pi} \int_{\Gamma} \frac{e^{ik|x-x'|}}{|x-x'|} J^s(x') dx'$$

Integral Equations for Maxwell's

Then

Continuity condition

$$\hat{n} imes \left(H_{ ext{tot}}^+ - H_{ ext{tot}}^-
ight) = J^s$$

- No field on int. of PEC: $H_{tot}^- = 0$
- Jump condition

together yield MFIE [Maue, ...]

$$\hat{n} imes H_{
m inc}^+ = rac{J^s}{2} - \left(n imes \left(PV\right) \left(
abla imes S_k J^s
ight)
ight)^s$$

Integral Equations for Maxwell's

Then

Continuity condition

$$\hat{n} imes \left(H_{ ext{tot}}^+ - H_{ ext{tot}}^-
ight) = J^s$$

- No field on int. of PEC: $H_{tot}^- = 0$
- Jump condition

together yield MFIE [Maue, ...]

$$\hat{n} \times H_{\text{inc}}^{+} = \underbrace{\begin{array}{c} J^{s} \\ 2 \end{array}}_{\begin{array}{c} (n \times (PV) (\nabla \times S_{k} J^{s}))^{s} \\ \uparrow \\ \text{Identity} \end{array}}_{\begin{array}{c} \text{Compact} \end{array}}$$

Integral Equations for Max

Then

Continuity condition

Solve for
$$J_s$$

Can now compute magnetic and electric (\dots) fields everywhere

$$\hat{n} \times \left(H_{\text{tot}}^{+} - H_{\text{tot}}^{-}\right) = J^{s}$$

- No field on int. of PEC: $H_{tot}^- = 0$
- Jump condition

together yield MFIE [Maue, ...]

$$\hat{n} \times H_{\text{inc}}^{+} = \underbrace{\begin{array}{c} J^{s} \\ 2 \end{array}}_{\text{Identity}} \underbrace{(n \times (PV) (\nabla \times S_{k} J^{s}))^{s}}_{\text{Compact}}$$

One issue with BIE methods

Need to compute

$$n \times (\nabla \times S_k J^s)(x) = \frac{1}{4\pi} n \times PV \int_{\Gamma} \nabla_x \times \frac{e^{ik|x-x'|}}{|x-x'|} J^s(x') dx'$$

for $x \in \Gamma$.
One issue with BIE methods

Need to compute

$$n \times (\nabla \times S_k J^s)(x) = \frac{1}{4\pi} n \times PV \int_{\Gamma} \underbrace{\nabla_x \times \frac{e^{ik|x-x^*}}{|x-x'|}}_{\uparrow} s(x') dx'$$

for $x \in \Gamma$.
Difficult when $x \approx x'$

Introduction QBX Design Results Conclusions

Machines BIEs for PDEs Existing Approaches

One issue with BIE methoc

Two (main) approaches:

- Galerkin (MoM)
- Nyström

Need to compute

$$n \times (\nabla \times S_k J^s)(x) = \frac{1}{4\pi} n \times PV \int_{\Gamma} \underbrace{\nabla_x \times \frac{e^{ik|x-x^*}}{|x-x'|}}_{\bullet} s(x') dx'$$

for $x \in \Gamma$.
Difficult when $x \approx x'$

Introduction QBX Design Results Conclusions

Machines BIEs for PDEs Existing Approaches

One issue with BIE methoc

Two (main) approaches:

■ Galerkin (MoM)

Nyström

Need to compute

$$n \times (\nabla \times S_k J^s)(x) = \frac{1}{4\pi} n \times PV \int_{\Gamma} \nabla_x \times \frac{e^{ik|x-x^*}}{|x-x'|} s(x') dx'$$

for $x \in \Gamma$.
Difficult when $x \approx x'$

Introduction QBX Design Results Conclusions

Machines BIEs for PDEs Existing Approaches

One issue with BIE methoc

Need to compute

Two (main) approaches:

■ Galerkin (MoM)

Nyström

Substantial efficiency gains, especially at high order

$$n \times (\nabla \times S_k J^s)(x) = \frac{1}{4\pi} n \times PV \int_{\Gamma} \underbrace{\bigvee_{x \to x} \frac{e^{ik|x-x}}{|x-x'|}}_{\bullet} s(x') dx'$$

for $x \in \Gamma$.
Difficult when $x \approx x'$

Outline

1 Introduction

- Method vs MachineBIEs for PDEs
- Existing Approaches to Quadrature

2 Developing QBX

- 3 Method design
- 4 Experimental results

5 Conclusions

Machines BIEs for PDEs Existing Approaches

A Sampling of Ideas

- Analytic/symbolic integration
 - Sometimes possible
 - Problematic because of geometry description
 - Numerical stability of resulting formulas?
- Adaptive integration
 - Fails because (many) singularities are not integrable
 - Expensive
- Change of variables/singularity subtraction/cancellation
 - Algebraic trickery weakens/removes singularity
 - Not general-purpose (across dimensions, kernels)

Machines BIEs for PDEs Existing Approaches

A Sampling of Ideas

- Analytic/symbolic integration
 - Sometimes possible
 - Problematic because of geometry description
 - Numerical stability of resulting formulas?
- Adaptive integration
 - Fails because (many) singularities are not integrable
 - Expensive
- Change of variables/singularity subtraction/cancellation
 - Algebraic trickery weakens/re singularity
 - Not general-purpose (across kernels)

Primary drawbacks:

- Not generic in singularity
- Depend on curve (2D?) geometry

Machines BIEs for PDEs Existing Approaches

A Sampling of Ideas

- Analytic/symbolic integration
 - Sometimes possible
 - Problematic because of geometry description
 - Numerical stability of resulting formulas?

Many more have worked on the problem: Sidi, Strain, Helsing, Davis, Duffy, Graglia, Hackbusch, Khayat, Schwab, Ying, Beale, Goodman, Haroldson, Lowengrub, Alpert, Rokhlin, Gimbutas, Bruno, Zorin, ...

. . .

Kernel Regularization

Singularity makes integration troublesome: Get rid of it!

$$\overline{\sqrt{(x-y)^2}} \rightarrow \overline{\sqrt{(x-y)^2+\varepsilon^2}}$$

. . .

Use Richardson extrapolation to recover limit as $\varepsilon \rightarrow 0$.

(May also use geometric motivation: limit along line towards singular point.)

Primary drawbacks:

- Low-order accurate
- Need to make *ε* smaller (i.e. kernel more singular) to get better accuracy

Outline

1 Introduction

2 Developing QBX

- Some intuition
- Insight through theory
- Other Potentials

3 Method design

4 Experimental results

5 Conclusions

Outline

2 Developing QBX Some intuition

Insight through theory

Using just the trapezoidal rule

Andreas Klöckner Quadrature by Expansion

Using just the trapezoidal rule

Using just the tr

Idea:

- Pick a point off surface: c := x + nr in 'accurate' region
- One-sided smooth potential: Field value there is an approximation to one-sided limit (Err=O(r))

Using just the tr

Idea:

- Pick a point off surface: c := x + nr in 'accurate' region
- One-sided smooth potential: Field value there is an approximation to one-sided limit (Err=O(r))

But: Can do much better!

QBX in formulas: Notation, Basics

Graf's addition theorem

QBX in formulas: Notation, Basics

Graf's addition theorem

$$H_0^{(1)}(k|x-x'|) = \sum_{l=-\infty}^{\infty} H_l^{(1)}(k|x'-c|)e^{il heta'}J_l(k|x-c|)e^{-il heta}$$

QBX in formula

Requires:
$$|x-c| < |x'-c|$$
 ("local expansion")

Graf's addition theorem

$$H_0^{(1)}(k|x-x'|) = \sum_{l=-\infty}^{\infty} H_l^{(1)}(k|x'-c|)e^{il heta'}J_l(k|x-c|)e^{-il heta}$$

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-\infty}^{\infty} \alpha_l J_l(k\rho) e^{-il\theta}$$

with

$$\alpha_{I} = \frac{i}{4} \int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') \, dx' \quad (I = -\infty, \dots, \infty)$$

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{I=-\infty}^{\infty} \alpha_I J_I(k\rho) e^{-iI heta}$$

with

$$\alpha_I = \frac{i}{4} \int_{\Gamma} H_I^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') \, dx' \quad (I = -\infty, \dots, \infty)$$

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-p}^{p} \alpha_l J_l(k\rho) e^{-il\theta}$$

with

$$\alpha_{I} = \frac{i}{4} \int_{\Gamma} H_{I}^{(1)}(k|x'-c|)e^{il\theta'}\sigma(x') dx' \quad (I = -\infty, \dots, \infty)$$

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-p}^{p} \alpha_l J_l(k\rho) e^{-il\theta}$$

with

$$\alpha_{I} = \frac{i}{4} T_{N} \left(\int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \right) \quad (I = -\infty, \dots, \infty)$$

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-p}^{p} \alpha_l J_l(k\rho) e^{-il\theta}$$

with

$$\alpha_{I} = \frac{i}{4} T_{N} \left(\int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \right) \quad (I = -\infty, \dots, \infty)$$

 $S\sigma$ is a smooth function *up to* Γ .

Two limits $(p, N \rightarrow \infty)!$ Experiment showed: order matters!

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-p}^{p} \alpha_l J_l(k\rho) e^{-il\theta}$$

with

$$\alpha_{I} = \frac{i}{4} T_{N} \left(\int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \right) \quad (I = -\infty, \dots, \infty)$$

Two limits $(p, N \rightarrow \infty)$! Experiment showed: order matters! And: failure and repair not actually surprising.

Outline

1 Introduction

- 2 Developing QBX Some intuition
 - Insight through theory
 - Other Potentials

3 Method design

4 Experimental results

5 Conclusions

Error result

$$\left| S\sigma(x) - \sum_{l=-p}^{p} \alpha_l^{\text{QBX}} J_l(k|x-c|) e^{-il\theta_{cx}} \right|$$

$$\leq \left(\underbrace{C_{p,\beta} r^{p+1} \|\sigma\|_{\mathcal{C}^{p,\beta}(\Gamma)}}_{\text{Truncation error}} + \underbrace{\tilde{C}_{p,2q,\beta} \left(\frac{h}{4r}\right)^{2q} \|\sigma\|_{\mathcal{C}^{2q,\beta}(\Gamma)}}_{\text{Quadrature error}} \right)$$

Proof sketch:

- I First, assume exact calculation of coefficients
- 2 Estimate tail of expansion
- **3** Estimate quadrature error in coefficients (derivatives/...)
- 4 Sum quadrature errors in truncated expansion
- [K, Barnett, Greengard, O'Neil JCP '13]

Outline

1 Introduction

2 Developing QBX

- Some intuitionInsight through theory
- Other Potentials

3 Method design

4 Experimental results

5 Conclusions

Other layer potentials

Can't just do single-layer potentials:

$$\alpha_l^D = \frac{i}{4} \int_{\Gamma} \frac{\partial}{\partial \hat{n}_{x'}} H_l^{(1)}(k|x'-c|) e^{il\theta'} \mu(x') \, dx'.$$

Even easier for target derivatives (S' et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Some intuition Insight through theory DLP etc.

Other layer potentials

Can't just do single-layer potentials:

$$\alpha_l^D = \frac{i}{4} \int_{\Gamma} \frac{\partial}{\partial \hat{n}_{x'}} H_l^{(1)}(k|x'-c|) e^{il\theta'} \mu(x') \, dx'.$$

Even easier for target derivatives (S' et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known-e.g.

$$(PV)D^*\mu(x)|_{\Gamma} = \lim_{x^{\pm} \to x} D\mu(x^{\pm}) \mp \frac{1}{2}\mu(x).$$
Other layer potentials

Can't just do single-layer potentials:

$$\alpha_l^D = \frac{i}{4} \int_{\Gamma} \frac{\partial}{\partial \hat{n}_{x'}} H_l^{(1)}(k|x'-c|) e^{il\theta'} \mu(x') \, dx'.$$

Even easier for target derivatives (S' et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Andreas Klockner

Fortunately: Jump relations are known-e.g.

$$(PV)D^*\mu(x)|_{\Gamma} =$$
Alternative: Two-sided average
Andreas Klöckner
Quadrature by Expansion

Outline

1 Introduction

2 Developing QBX

- 3 Method design
 - Achieving high order
 - Unstructured Geometries
 - Acceleration
 - Numerical Conditioning
- 4 Experimental results

5 Conclusions

Outline

1 Introduction

2 Developing QBX

- Method design
 Achieving high order
 Unstructured Geometries
 Acceleration
 Numerical Conditioning
- 4 Experimental results

5 Conclusions

Achieving high order

Two approaches:

• Asymptotically convergent: $r = \sqrt{h}$

- $each Error \rightarrow 0 as h \rightarrow 0$
- Solution Low order: $h^{(p+1)/2}$

• Convergent with controlled precision: r = 5h

Error
$$\neq$$
 0 as $h \rightarrow$ 0

High order: h^{p+1}

to controlled precision $\varepsilon := (1/5)^q$

Outline

1 Introduction

2 Developing QBX

3 Method design
Achieving high order
Unstructured Geometries
Acceleration
Numerical Conditioning

4 Experimental results

5 Conclusions

"Global" QBX: Dealing with geometry

"Global" QBX, part II

Makes geometry processing much simpler

Problem: Expanded field becomes non-	kes geometry process-
smooth (because of end singularities)	much simpler

Outline

1 Introduction

2 Developing QBX

3 Method design

Achieving high orderUnstructured Geometries

Acceleration

- Numerical Conditioning
- 4 Experimental results

5 Conclusions

Fast Multipole Methods

•

Fast Multipole Methods

Only works if sources are 'far enough' away from targets.

Good: true for most particle pairs

QBX + FMM: Two possibilities (ongoing)

"Global" QBX

- Requires modified FMM
- 🗸 Cheap
- Accurate
- Not robust wrt complicated geometry
 - requires complicated "fallback"

- Requires modified FMM
- ✗ (Relatively) expensive
- (Controlled) error contribution from end singularities
- ✓ Robust wrt geometry

QBX + FMM: Two possibilities (ongoing)

"Global" QBX

- Requires modified FMM
- 🗸 Cheap
- Accurate
- Not robust wrt complicated geometry
 - requires complicated

"fallback"

"Local" QBX

- Requires modified FMM
- ✗ (Relatively) expensive
- (Controlled) error contribution from end singularities
- ✓ Robust wrt geometry

Complicated because of smoothness assumption

But: Smoothness assumption key strength

Outline

1 Introduction

2 Developing QBX

3 Method design

- Achieving high order
- Unstructured Geometries
- Acceleration
- Numerical Conditioning
- 4 Experimental results

5 Conclusions

Spectral behavior

Spectral behavior

Spectral behavior, part II

QBX wants to approximate a compact operator-let it:

$$D\mu(x) = rac{1}{2} \left(\lim_{x^+ o x} D\mu(x^+) + \lim_{x^- o x} D\mu(x^-)
ight).$$

Simply use two QBX applications.

Predictably benign spectral behavior at high frequencies.

Important for iterative solvers (e.g. GMRES)

Not many competing schemes have that!

Outline

1 Introduction

- 2 Developing QBX
- 3 Method design
- 4 Experimental results

5 Conclusions

BVP on a smooth domain

	27	
F		

BC	Side	k	p	<i>M</i> = 70	M = 105	<i>M</i> = 130	EOC
Dir.	int	1	1	1.7e-04 (16)	7.8e-05 (16)	8.0e-05 (16)	1.4
			3	1.8e-06 (16)	4.4e-07 (16)	$1.7e-07_{(16)}$	3.8
			5	5.7e-08 (16)	5.6e-09 (16)	$3.7e-09_{(16)}$	4.6
		6	1	2.9e-02 (25)	1.3e-02 (25)	7.6e-03 (24)	2.2
			3	8.1e-05 (25)	1.8e-05 (25)	6.1e-06 (25)	4.1
			5	9.0e-07 (25)	9.7e-08 (25)	2.0e-08 (25)	6.1
Neu.	int	1	1	7.5e-02 (20)	5.4e-02 (20)	4.1e-02 (21)	0.9
			3	9.7e-04 (19)	3.2e-04 (19)	$1.5e-04_{(19)}$	3.0
			5	1.2e-05 (18)	2.0e-06 (18)	6.6e-07 (18)	4.7
		6	1	3.7e-01 (61)	3.2e-01 (61)	2.4e-01 (61)	0.7
			3	2.8e-03 (60)	9.6e-04 (60)	$4.4e-04_{(60)}$	3.0
			5	4.1e-05 (50)	6.5e-06 (50)	1.8e-06 (50)	4.9
Dirichlet problem on corner domain

Dirich

1.0	BC type	Side	k	p	<i>M</i> = 80	M = 138	EOC
	Dirichlet	int	1	1	1.6e-03 (20)	2.1e-04 (21)	3.7
0.5-				3	5.9e-06 (20)	2.0e-07 (21)	6.2
				5	3.3e-08 (20)	$3.3e-09_{(21)}$	4.2
0.0			6	1	6.9e-02 (38)	8.7e-03 (38)	3.8
-0.5-				3	1.1e-04 (38)	3.8e-06 (38)	6.1
				5	1.0e-06 (38)	2.4e-08 (38)	6.9
-1.0-		ext	1	1	3.4e-04 (19)	5.2e-05 (19)	3.5
				3	2.2e-06 (19)	8.2e-08 (19)	6.0
				5	1.3e-08 (19)	$1.6e-09_{(19)}$	3.9
			6	1	1.6e-02 (33)	1.9e-03 (33)	3.9
				3	4.5e-05 (33)	1.3e-06 (33)	6.5
				5	1.4e-07 (33)	1.3e-08 (33)	4.4
					-		

r.

.

QBX in 3D

Outline

1 Introduction

- 2 Developing QBX
- 3 Method design
- 4 Experimental results

5 Conclusions

QBX: Why exciting?

Mathematically:

- General: Dimension, PDE, BC, kernel, surface discretization
- Fast enough for on-the-fly (non-stored) quadrature
- Benign conditioning (iterative methods $\rightarrow 10^{-15} \ll$ discr. error)
- Works easily for hypersingular kernels

Computationally: (ongoing)

- Little data, many flops: high arithmetic intensity
- Good match for hierarchical parallelism
- Locally homogeneous, batched work

Questions?

?

Thank you for your attention!

http://www.cs.illinois.edu/~andreask/