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CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008)
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Improving matters for number crunching

8

Latency-constrained machine

3 Throughput-constrained machine
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Recent Processor Architecture

Massively concurrent

ILP, SMT for (memory)
latency
parallel by SIMD
parallel across cores

Rarely flop-limited

Limited by data motion

Nv GT200
(2008)

Nv Fermi
(2010)

Intel IVB
(2012)

AMD Tahiti
(2012)

Nv GK110
(2012)
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Computational wish list for PDE schemes

A method and its algorithm should. . .

admit massive concurrency

provide a match for hierarchical
concurrency

have a high computation/access ratio
(‘intensity’)

use minimal storage

3
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Application-driven wish list

Unstructured geometries

Adaptable to many engineering
problems
Compatible with adaptive
discretization

General-purpose
(as much as possible—in PDE,
BCs, . . . )

Robust

Well-conditioned

High order

Also in geometry representation
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Why high order?

Order p: Error bounded as

‖uh − u‖ ≤ Chp

Thought experiment:

First order Fifth order

1,000 DoFs ≈ 1,000 triangles
Error: 0.1

1,000 DoFs ≈ 66 triangles
Error: 0.1

Error: 0.01 @
100,000 DoFs
≈ 100,000 triangles

Error: 0.01 @
1,800 DoFs
≈ 120 triangles

Want p ≥ 3 available.

Assumption: Solution suffi-
ciently smooth

Ideally: p chosen by user

Also beneficial for modern ma-
chines:

More accuracy with fewer
degrees of freedom

Fewer degrees of freedom
needed for given accuracy

More operations on less
data

Exploit architecturally
‘free’ flops

Andreas Klöckner Quadrature by Expansion
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Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions Machines BIEs for PDEs Existing Approaches

Why high order?

Order p: Error bounded as

‖uh − u‖ ≤ Chp

Thought experiment:

First order Fifth order

1,000 DoFs ≈ 1,000 triangles
Error: 0.1

1,000 DoFs ≈ 66 triangles
Error: 0.1

Error: 0.01 @
100,000 DoFs
≈ 100,000 triangles

Error: 0.01 @
1,800 DoFs
≈ 120 triangles

Want p ≥ 3 available.

Assumption: Solution suffi-
ciently smooth

Ideally: p chosen by user

Also beneficial for modern ma-
chines:

More accuracy with fewer
degrees of freedom

Fewer degrees of freedom
needed for given accuracy

More operations on less
data

Exploit architecturally
‘free’ flops
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Fundamental Solutions

Laplace Equation

4u = 0

Monopole

Dipole

Helmholtz Equation

4u + k2u = 0

Monopole

Dipole

Can take this arbitrarily far:

Quadrupole, . . .
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Building Solutions

Main question for numerical solution of PDEs:

How is the solution represented?

Our choice here:
Sums of fundamental solutions

ũ(x) =
N∑
i=1

G (|x − yi |)σi

Is the solution reachable in this way?

Uniqueness?

Linearity → must satisfy PDE

Boundary conditions: not necessarily

Andreas Klöckner Quadrature by Expansion
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Summing Fundamental Solutions
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Layer Potentials

(Skσ)(x) :=

∫
Γ

Gk(x − y)σ(y)dsy

(S ′kσ)(x) := n · ∇xPV

∫
Γ

Gk(x − y)σ(y)dsy

(Dkσ)(x) := PV

∫
Γ

n · ∇yGk(x − y)σ(y)dsy

(D ′kσ)(x) := n · ∇x f .p.

∫
Γ

n · ∇yGk(x − y)σ(y)dsy

Operators–map function σ on Γ to. . .
. . . function on Rn

. . . function on Γ (in particular)

S ′′ (and higher) analogously

Called layer potentials

Gk is the Helmholtz kernel (k = 0 → Laplace)
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Example: Integral Equations for Maxwell’s

Want to solve the

time-harmonic

linear

isotropic

Maxwell’s equations

for the scattered field
response
(to a given incoming field)

in an exterior domain

with a metallic scatterer.

Andreas Klöckner Quadrature by Expansion
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Integral Equations for Maxwell’s

Use:

Vector potential H = ∇× A with 4A + k2A = 0

Integral representation for vector potential

A(x) = (SkJs)(x) =
1

4π

∫
Γ

e ik|x−x
′|

|x − x ′|
Js(x ′)dx ′

Andreas Klöckner Quadrature by Expansion
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Integral Equations for Maxwell’s

Then

Continuity condition

n̂ ×
(
H+

tot − H−tot

)
= Js

No field on int. of PEC: H−tot = 0

Jump condition

together yield MFIE [Maue, . . . ]

n̂ × H+
inc =

Js

2
− (n × (PV ) (∇× SkJs))s

Identity Compact

Solve for Js

Can now compute magnetic and
electric (. . . ) fields everywhere

Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions Machines BIEs for PDEs Existing Approaches

Integral Equations for Maxwell’s

Then

Continuity condition

n̂ ×
(
H+

tot − H−tot

)
= Js

No field on int. of PEC: H−tot = 0

Jump condition

together yield MFIE [Maue, . . . ]

n̂ × H+
inc =

Js

2
− (n × (PV ) (∇× SkJs))s

Identity Compact

Solve for Js

Can now compute magnetic and
electric (. . . ) fields everywhere
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One issue with BIE methods

Need to compute

n × (∇× SkJs)(x) =
1

4π
n × PV

∫
Γ
∇x ×

e ik|x−x
′|

|x − x ′|
Js(x ′)dx ′

for x ∈ Γ.

Difficult when x ≈ x ′

Two (main) approaches:

Galerkin (MoM)

Nyström
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One issue with BIE methods

Need to compute

n × (∇× SkJs)(x) =
1

4π
n × PV

∫
Γ
∇x ×

e ik|x−x
′|

|x − x ′|
Js(x ′)dx ′

for x ∈ Γ. Difficult when x ≈ x ′

Two (main) approaches:

Galerkin (MoM)

Nyström

Substantial efficiency gains,
especially at high order

Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions Machines BIEs for PDEs Existing Approaches

Outline

1 Introduction
Method vs Machine
BIEs for PDEs
Existing Approaches to Quadrature

2 Developing QBX

3 Method design

4 Experimental results

5 Conclusions
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A Sampling of Ideas

Analytic/symbolic integration

Sometimes possible
Problematic because of geometry
description
Numerical stability of resulting formulas?

Adaptive integration

Fails because (many) singularities are
not integrable
Expensive

Change of variables/singularity
subtraction/cancellation

Algebraic trickery weakens/removes
singularity
Not general-purpose (across dimensions,
kernels)

|x − y |

Gk(|x − y |))

Primary drawbacks:

Not generic in singularity

Depend on curve (2D?)
geometry

Many more have worked
on the problem: Sidi,
Strain, Helsing, Davis,
Duffy, Graglia, Hackbusch,
Khayat, Schwab, Ying,
Beale, Goodman, Harold-
son, Lowengrub, Alpert,
Rokhlin, Gimbutas, Bruno,
Zorin, . . .
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Kernel Regularization

Singularity makes integration troublesome: Get rid of it!

· · ·√
(x − y)2

→ · · ·√
(x − y)2 + ε2

Use Richardson extrapolation to recover limit as ε→ 0.

(May also use geometric motivation: limit along line towards
singular point.)

Primary drawbacks:

Low-order accurate

Need to make ε smaller (i.e. kernel more singular) to get
better accuracy

Andreas Klöckner Quadrature by Expansion
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Using just the trapezoidal rule

10

9

8

7

6

5

4

3

2

1

0

lo
g 1

0(
E
rr

o
r)

Effectively: replacing layer of
charge with discrete sources.

Idea:

Pick a point off surface: c := x + n̂r
in ‘accurate’ region

One-sided smooth potential: Field value
there is an approximation to
one-sided limit (Err=O(r))
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Effectively: replacing layer of
charge with discrete sources.

Idea:

Pick a point off surface: c := x + n̂r
in ‘accurate’ region

One-sided smooth potential: Field value
there is an approximation to
one-sided limit (Err=O(r))

But: Can do much better!
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Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions Some intuition Insight through theory DLP etc.

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

Curve Γ Source quad. nodes x ′

Target point x

Expansion center

Potential from
expansion

“Naive”
potential
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QBX in formulas: Notation, Basics

Graf’s addition theorem

Γ
ρ

c

x ′

x

θ′

θ

H
(1)
0 (k |x − x ′|) =

∞∑
l=−∞

H
(1)
l (k|x ′ − c |)e ilθ

′
Jl(k |x − c |)e−ilθ

Requires: |x − c | < |x ′ − c | (“local expansion”)
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QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =
∞∑

l=−∞
αlJl(kρ)e−ilθ

with

αl =
i

4

∫
Γ

H
(1)
l (k|x ′ − c |)e ilθ

′
σ(x ′) dx ′ (l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!
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QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =

p∑
l=−p

αlJl(kρ)e−ilθ

with

αl =
i

4
TN

(∫
Γ

H
(1)
l (k |x ′ − c |)e ilθ

′
σ(x ′) dx ′

)
(l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!

And: failure and repair not actually surprising.
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Error result

∣∣∣∣∣∣Sσ(x)−
p∑

l=−p
αQBX
l Jl(k |x − c |)e−ilθcx

∣∣∣∣∣∣
≤

(
Cp,β rp+1‖σ‖Cp,β(Γ)︸ ︷︷ ︸

Truncation error

+ C̃p,2q,β

(
h

4r

)2q

‖σ‖C2q,β(Γ)︸ ︷︷ ︸
Quadrature error

)

Proof sketch:

1 First, assume exact calculation of coefficients

2 Estimate tail of expansion

3 Estimate quadrature error in coefficients (derivatives/. . . )

4 Sum quadrature errors in truncated expansion

[K, Barnett, Greengard, O’Neil JCP ‘13]

Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions Some intuition Insight through theory DLP etc.

Outline

1 Introduction

2 Developing QBX
Some intuition
Insight through theory
Other Potentials

3 Method design

4 Experimental results

5 Conclusions
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Other layer potentials

Can’t just do single-layer potentials:

αD
l =

i

4

∫
Γ

∂

∂n̂x ′
H

(1)
l (k |x ′ − c |)e ilθ

′
µ(x ′) dx ′.

Even easier for target derivatives (S ′ et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known–e.g.

(PV )D∗µ(x)|Γ = lim
x±→x

Dµ(x±)∓ 1

2
µ(x).

Alternative: Two-sided average
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Achieving high order

Error ≤

(
C rp+1︸︷︷︸

Truncation error

+C

(
h

r

)q

︸ ︷︷ ︸
Quadrature error

)
‖σ‖

Two approaches:

Asymptotically convergent: r =
√

h
+ Error → 0 as h→ 0
- Low order: h(p+1)/2

Convergent with controlled precision: r = 5h
- Error 6→ 0 as h→ 0
+ High order: hp+1

to controlled precision ε := (1/5)q

Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions High order Geometry Acceleration Conditioning

Outline

1 Introduction

2 Developing QBX

3 Method design
Achieving high order
Unstructured Geometries
Acceleration
Numerical Conditioning

4 Experimental results

5 Conclusions
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“Global” QBX: Dealing with geometry

Γ

Ω

c

b
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“Global” QBX, part II

Γ
Ω

c

b
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“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)
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“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)

Idea: Manage as additional, finite error
contribution (using p, h ∝ r)
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Fast Multipole Methods

Only works if sources are ‘far enough’
away from targets.

Good: true for most particle pairs
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Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions High order Geometry Acceleration Conditioning

Fast Multipole Methods

4 2 0 2 4
4

2

0

2

4
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QBX + FMM: Two possibilities (ongoing)

“Global” QBX

Requires modified FMM

3 Cheap

3 Accurate

8 Not robust wrt complicated
geometry

requires complicated
“fallback”

“Local” QBX

Requires modified FMM

8 (Relatively) expensive

8 (Controlled) error
contribution from end
singularities

3 Robust wrt geometry

Complicated because of smoothness assumption

But: Smoothness assumption key strength
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Spectral behavior

Interior Laplace Dirichlet problem
would try to invert this operator.
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Spectral behavior, part II

QBX wants to approximate a compact operator–let it:

Dµ(x) =
1

2

(
lim

x+→x
Dµ(x+) + lim

x−→x
Dµ(x−)

)
.

Simply use two QBX applications.

Predictably benign spectral behavior at high frequencies.

Important for iterative solvers (e.g. GMRES)

Not many competing schemes have that!
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BVP on a smooth domain

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

BC Side k p M = 70 M = 105 M = 130 EOC

Dir. int 1 1 1.7e-04 (16) 7.8e-05 (16) 8.0e-05 (16) 1.4
3 1.8e-06 (16) 4.4e-07 (16) 1.7e-07 (16) 3.8
5 5.7e-08 (16) 5.6e-09 (16) 3.7e-09 (16) 4.6

6 1 2.9e-02 (25) 1.3e-02 (25) 7.6e-03 (24) 2.2
3 8.1e-05 (25) 1.8e-05 (25) 6.1e-06 (25) 4.1
5 9.0e-07 (25) 9.7e-08 (25) 2.0e-08 (25) 6.1

Neu. int 1 1 7.5e-02 (20) 5.4e-02 (20) 4.1e-02 (21) 0.9
3 9.7e-04 (19) 3.2e-04 (19) 1.5e-04 (19) 3.0
5 1.2e-05 (18) 2.0e-06 (18) 6.6e-07 (18) 4.7

6 1 3.7e-01 (61) 3.2e-01 (61) 2.4e-01 (61) 0.7
3 2.8e-03 (60) 9.6e-04 (60) 4.4e-04 (60) 3.0
5 4.1e-05 (50) 6.5e-06 (50) 1.8e-06 (50) 4.9
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Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions

Dirichlet problem on corner domain

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

BC type Side k p M = 80 M = 138 EOC

Dirichlet int 1 1 1.6e-03 (20) 2.1e-04 (21) 3.7
3 5.9e-06 (20) 2.0e-07 (21) 6.2
5 3.3e-08 (20) 3.3e-09 (21) 4.2

6 1 6.9e-02 (38) 8.7e-03 (38) 3.8
3 1.1e-04 (38) 3.8e-06 (38) 6.1
5 1.0e-06 (38) 2.4e-08 (38) 6.9

ext 1 1 3.4e-04 (19) 5.2e-05 (19) 3.5
3 2.2e-06 (19) 8.2e-08 (19) 6.0
5 1.3e-08 (19) 1.6e-09 (19) 3.9

6 1 1.6e-02 (33) 1.9e-03 (33) 3.9
3 4.5e-05 (33) 1.3e-06 (33) 6.5
5 1.4e-07 (33) 1.3e-08 (33) 4.4

Andreas Klöckner Quadrature by Expansion



Introduction QBX Design Results Conclusions

Dirichlet problem on corner domain

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0
BC type Side k p M = 80 M = 138 EOC

Dirichlet int 1 1 1.6e-03 (20) 2.1e-04 (21) 3.7
3 5.9e-06 (20) 2.0e-07 (21) 6.2
5 3.3e-08 (20) 3.3e-09 (21) 4.2

6 1 6.9e-02 (38) 8.7e-03 (38) 3.8
3 1.1e-04 (38) 3.8e-06 (38) 6.1
5 1.0e-06 (38) 2.4e-08 (38) 6.9

ext 1 1 3.4e-04 (19) 5.2e-05 (19) 3.5
3 2.2e-06 (19) 8.2e-08 (19) 6.0
5 1.3e-08 (19) 1.6e-09 (19) 3.9

6 1 1.6e-02 (33) 1.9e-03 (33) 3.9
3 4.5e-05 (33) 1.3e-06 (33) 6.5
5 1.4e-07 (33) 1.3e-08 (33) 4.4
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QBX in 3D

Laplace exterior Dirichlet problem
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QBX: Why exciting?

Mathematically:

General: Dimension, PDE, BC, kernel, surface discretization

Fast enough for on-the-fly (non-stored) quadrature

Benign conditioning
(iterative methods → 10−15 � discr. error)

Works easily for hypersingular kernels

3
Computationally: (ongoing)

Little data, many flops: high arithmetic
intensity

Good match for hierarchical parallelism

Locally homogeneous, batched work

Andreas Klöckner Quadrature by Expansion
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Questions?

?

Thank you for your attention!

http://www.cs.illinois.edu/~andreask/

Andreas Klöckner Quadrature by Expansion

http://www.cs.illinois.edu/~andreask/
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