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Course Goal

PDE BVP goes in.

Accurate solution comes out,
quickly.
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Course Outline

Part 1: Theory (∼ 6)

• Functional Analysis recap

• A zoology of IEs

• Riesz-Schauder theory

• Basic potential theory

Part 2: Numerics (∼ 6)

• Discretizations:
Galerkin/Nyström

• Quadrature

• Linear systems/conditioning

Part 3: Algorithms (∼6)

• ‘Fast algorithm’?

• Fast Multipole

• FMM with Quadrature

• Other fast algorithms

Part 4: Perspectives (∼6)

• More PDEs

• More BCs

• Variable-coefficient problems

• Final projects
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Sign-up sheet
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Survey

• Home department

• Degree

• Longest program ever
written?

• in Python?

• Math preparation
• Real analysis
• Complex analysis
• Functional analysis

• Written a PDE solver
before?
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Class web page

bit.ly/inteq13

Posted: Virtual machine image (in-
structions in HW1)

Posted: Homework set 1
(Python, math/numerics warm-up, git,
mechanics)
Due next week.
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Listserv

inteq13@tiker.net

About this class What?

mailto:inteq13@tiker.net


Books

Book situation suboptimal. . .
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More Books
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Grading

• 60% Homework

• 40% Final project
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Smile! You’re on camera

Lecture video will be posted soon after each class.
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Questions?

?
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Outline

About this class

Integral equations: what?
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Two specific elliptic PDEs

Laplace’s Equation

4u = 0

• Steady-state ∂tu = 0 of
wave propagation, heat
conduction

• Electric potential u for
applied voltage

• Minimal surfaces/“soap
films”

• ∇u as velocity of
incompressible flow

Helmholtz Equation

4u + k2u = 0

• Assume time-harmonic
behavior ũ = e±iωtu(x) in
time-domain wave equation:

∂2
t ũ = 4ũ

• Sign in ũ determines
direction of wave:

• Incoming/outgoing if
free-space problem

Applications: Propagation of
sound, electromagnetic waves
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Fundamental Solutions

Laplace Equation

−4u = δ

Monopole

Dipole

Helmholtz Equation

4u + k2u = δ

Monopole

Dipole

Can take this arbitrarily far:

Quadrupole, . . .
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Fundamental Solutions

Laplace Equation

−4G = δ

Monopole:

G (x) =

{
1
−2π log |x | 2D
1

4π
1
|x | 3D

Dipole:

∂

∂x
G (x)

Helmholtz Equation

(4+ k2)G = δ

Monopole:

G (x) =

{
i
4H

1
0 (k |x |) 2D

1
4π

e ik|x|

|x | 3D

Dipole:

∂

∂x
G (x)
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Building Solutions

Main question for numerical solution of PDEs:

How is the solution represented?

Our choice here: Sums of fundamental solutions

ũ(x) =
N∑
i=1

G (|x − yi |)σi

located at source points yi

• Linearity → must satisfy PDE

• Boundary conditions: not necessarily

• Is the solution reachable in this way?

• Uniqueness?
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Summing Fundamental Solutions
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Layer Potentials

(Skσ)(x) :=

ˆ
Γ
Gk(x − y)σ(y)dsy

(S ′kσ)(x) := n · ∇xPV

ˆ
Γ
Gk(x − y)σ(y)dsy

(Dkσ)(x) := PV

ˆ
Γ
n · ∇yGk(x − y)σ(y)dsy

(D ′kσ)(x) := n · ∇x f .p.

ˆ
Γ
n · ∇yGk(x − y)σ(y)dsy

• Operators–map function σ on Γ to. . .
• . . . function on Rn

• . . . function on Γ (in particular)

• S ′′ (and higher) analogously

• Called layer potentials

• Gk is the Helmholtz kernel (k = 0 → Laplace)
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Layer potential demo time
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Solving a BVP with integral equations
Solve a (interior Laplace Dirichlet) BVP, ∂Ω = Γ

4u = 0 inΩ, u|Γ = f |Γ.

1. Pick representation:

u(x) := (Sσ)(x)

2. Take (interior) limit onto Γ:

u|Γ = Sσ

3. Enforce BC:
u|Γ = f

4. Solve resulting linear system:

Sσ = f

5. Obtain PDE solution in Ω by evaluating representation
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BVP solve demo time
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What to do?

1. Pick representation:

u(x) := (Dσ)(x)

2. Take (interior) limit onto Γ:

u|Γ = Dσ − σ/2

3. Enforce BC:
u|Γ = f

4. Solve resulting linear system:

(D − Id /2)σ = f

5. Obtain PDE solution in Ω by evaluating representation

‘Second-kind’ integral equation
Previous one: ‘First-kind’
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Second-kind BVP solve demo time
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Questions?

?
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Image Credits

• Notebook: sxc.hu/abeall
• Question mark: sxc.hu/svilen001
• Camera: sxc.hu/Kolobsek
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