Integral Equations and Fast Algorithms Lecture 1: Intro

CS 598AK · August 27, 2013

About this class What?

Today

About this class

Integral equations: what?

Outline

About this class

Integral equations: what?

Course Goal

PDE BVP goes in. Accurate solution comes out, quickly.

About this class What?

Course Goal

PDE BVP goes in. Accurate solution comes out, quickly efficiently.

Course Outline

Part 1: Theory (~ 6)

- Functional Analysis recap
- A zoology of IEs
- Riesz-Schauder theory
- Basic potential theory

Part 2: Numerics (\sim 6)

- Discretizations: Galerkin/Nyström
- Quadrature
- Linear systems/conditioning

Part 3: Algorithms (~ 6)

- 'Fast algorithm'?
- Fast Multipole
- FMM with Quadrature
- Other fast algorithms

Part 4: Perspectives (~ 6)

- More PDEs
- More BCs
- Variable-coefficient problems
- Final projects

Sign-up sheet

Survey

- Home department
- Degree
- Longest program ever written?
 - in Python?
- Math preparation
 - Real analysis
 - Complex analysis
 - Functional analysis
- Written a PDE solver before?

Class web page

TeachingfittegralEquationsFall2013 Argant ange senanten Batera Bagada

Integral Equations and Fast Methods (CS 598AK @ UIUC)

Class TreeLection	© Londary Thursday 2 Olyme 2 Lipse / 1384 © Ends
Industry	
Emai	få andrassis pilletets adte
Office	Ars. 400 9 Selvel
Office blours	363
One Palpape	G sepurat principle

Description

What to expect

A Cente Intro Linear Reprositivene Cafforde Hermine Sene Roading Teory: The Laters of Hermite TeOL and a two applications The Laters of Hermite Teory and the Sene Applications Water to reproduce Laters and Water to reproduce Laters and Water to reproduce Laters and The Lader and the Cafford Hermite The Lader and the Sene Applications The Lader and the Se

What you should already know

a method method that solves follows's againstic $\Box u = I$ (your choice of geometry, boundary conditions and discretigation) an analysis quantum of the solves follows's againstic discretigation: Undates

Appart 3, 2013 Uses starts in August 23, 2012, from 3-315pm, Write also been exigned a room. We will be meeting in 1304 Selbst. See you then?

Grading Evaluation

📄 Thalori Bod yet.

Material

Integral equation methods in scattering theory by Colon and Knee	Comple Books	Q all K library
Partial Bitfunential Equations of Alathematical Physics and integral Equations by Commer and Los	C Coogle Books	O proc remote
Partici Difference Associate Ashiro duction by Collen		G and ranky and available
Magna Equations by Racidous3	G Coogle Books	
Foundations of Polandial Denary by Gellegy	Comple Books	Q BUC Heavy

Related classes elsewhere

Colles responses

bit.ly/inteq13

Class web page

Burge Securities Related Billion

Integral Equations and Fast Methods (CS 598AK @ UIUC)

	© Londary Transfery 2 Olymp 2 Light / 1384 © Enter
Indicator .	
Email	fi and used pline's adv
	Am. 400 9 Selvel
Office Hours	160
One Weigepr	@ sepurat privat)

Induitore training

Description

What is exact

A Gente Intro Union Reprovidument/SPATIon even-up been drooted theory in Union, Provide POEL and a few approximate integral Equation in these and non-POEL doubting of even were to compare efforts integral the context and hardware events between and hardware events the context and hardware events

What you should already know

Undates

August 3, 2013 Description and August 21, 2012, from 3-3:55pm. We've also been excipted a room. We will be reacting in 1204 Select. See you then?

Grading Evaluation

📄 Thalori Bod yet.

Material

Integral equation methods in locate ing theory to (doto and Kinos Andra Mithianed Aguations of Aleban educat Angular Aguators by George Boool, Geor Related classes elsewhere

📥 putton' 📲

Posted: Virtual machine image (instructions in HW1)

Posted: Homework set 1 (Python, math/numerics warm-up, git, mechanics) Due next week.

inteq13@tiker.net

About this class What?

Books

Books

More Books

Grading

- 60% Homework
- 40% Final project

Smile! You're on camera

Lecture video will be posted soon after each class.

About this class What?

Questions?

?

About this class What?

Outline

About this class

Integral equations: what?

Two specific elliptic PDEs

Laplace's Equation

 $\triangle u = 0$

- Steady-state ∂_tu = 0 of wave propagation, heat conduction
- Electric potential *u* for applied voltage
- Minimal surfaces/ "soap films"
- ∇u as velocity of incompressible flow

Two specific elliptic PDEs

Laplace's Equation

Helmholtz Equation

 $\triangle u = 0$

- Steady-state ∂_t u = 0 of wave propagation, heat conduction
- Electric potential *u* for applied voltage
- Minimal surfaces/ "soap films"
- ∇u as velocity of incompressible flow

$$\triangle u + k^2 u = 0$$

• Assume time-harmonic behavior $\tilde{u} = e^{\pm i\omega t}u(x)$ in time-domain wave equation:

$$\partial_t^2 \tilde{u} = \triangle \tilde{u}$$

- Sign in *ũ* determines direction of wave:
 - Incoming/outgoing if free-space problem

Applications: Propagation of sound, electromagnetic waves

Laplace Equation $-\triangle u = \delta$ Monopole

Laplace Equation

 $-\triangle G = \delta$

Monopole:

$$G(x) = egin{cases} rac{1}{-2\pi} \log |x| & 2\mathsf{D} \ rac{1}{4\pi} rac{1}{|x|} & 3\mathsf{D} \end{cases}$$

Laplace Equation

 $-\triangle G = \delta$

Monopole:

Helmholtz Equation

 $(\triangle + k^2)G = \delta$

Monopole:

$$G(x) = \begin{cases} \frac{1}{-2\pi} \log |x| & 2\mathsf{D} \\ \frac{1}{4\pi} \frac{1}{|x|} & 3\mathsf{D} \end{cases}$$

$$G(x) = \begin{cases} \frac{i}{4}H_0^1(k|x|) & 2\mathsf{D} \\ \frac{1}{4\pi}\frac{e^{ik|x|}}{|x|} & 3\mathsf{D} \end{cases}$$

Laplace Equation

 $-\triangle G = \delta$

Monopole:

Helmholtz Equation

 $(\triangle + k^2)G = \delta$

Monopole:

$$G(x) = \begin{cases} \frac{1}{-2\pi} \log |x| & 2\mathsf{D} \\ \frac{1}{4\pi} \frac{1}{|x|} & 3\mathsf{D} \end{cases}$$

$$G(x) = \begin{cases} \frac{i}{4}H_0^1(k|x|) & 2\mathsf{D} \\ \frac{1}{4\pi}\frac{e^{ik|x|}}{|x|} & 3\mathsf{D} \end{cases}$$

Dipole:

$$\frac{\partial}{\partial_x}G(x)$$

Dipole:

$$\frac{\partial}{\partial_x}G(x)$$

About this class What?

Main question for numerical solution of PDEs:

How is the solution represented?

Our choice here: Sums of fundamental solutions

$$\tilde{\mu}(x) = \sum_{i=1}^{N} G(|x-y_i|)\sigma_i$$

Main question for numerical solution of PDEs:

How is the solution represented?

Our choice here: Sums of fundamental solutions

$$\tilde{\mu}(x) = \sum_{i=1}^{N} G(|x-y_i|)\sigma_i$$

located at source points y_i

• Linearity \rightarrow must satisfy PDE

Main question for numerical solution of PDEs:

How is the solution represented?

Our choice here: Sums of fundamental solutions

$$\tilde{u}(x) = \sum_{i=1}^{N} G(|x-y_i|)\sigma_i$$

- Linearity \rightarrow must satisfy PDE
- Boundary conditions: not necessarily

Main question for numerical solution of PDEs:

How is the solution represented?

Our choice here: Sums of fundamental solutions

$$\tilde{u}(x) = \sum_{i=1}^{N} G(|x-y_i|)\sigma_i$$

- Linearity \rightarrow must satisfy PDE
- Boundary conditions: not necessarily
- Is the solution reachable in this way?

Main question for numerical solution of PDEs:

How is the solution represented?

Our choice here: Sums of fundamental solutions

$$\tilde{u}(x) = \sum_{i=1}^{N} G(|x-y_i|)\sigma_i$$

- Linearity \rightarrow must satisfy PDE
- Boundary conditions: not necessarily
- Is the solution reachable in this way?
 - Uniqueness?

Layer Potentials

$$(S_k\sigma)(x) := \int_{\Gamma} G_k(x-y)\sigma(y)ds_y$$

$$(S'_k\sigma)(x) := n \cdot \nabla_x PV \int_{\Gamma} G_k(x-y)\sigma(y)ds_y$$

$$(D_k\sigma)(x) := PV \int_{\Gamma} n \cdot \nabla_y G_k(x-y)\sigma(y)ds_y$$

$$(D'_k\sigma)(x) := n \cdot \nabla_x f.p. \int_{\Gamma} n \cdot \nabla_y G_k(x-y)\sigma(y)ds_y$$

- Operators-map function σ on Γ to...
 - ... function on \mathbb{R}^n
 - ... function on Γ (in particular)
- S" (and higher) analogously
- Called layer potentials
- G_k is the Helmholtz kernel ($k = 0 \rightarrow Laplace$)

Layer potential demo time

Solving a BVP with integral equations Solve a (interior Laplace Dirichlet) BVP, $\partial \Omega = \Gamma$

$$\triangle u = 0$$
 in Ω , $u|_{\Gamma} = f|_{\Gamma}$.

1. Pick representation:

$$u(x) := (S\sigma)(x)$$

2. Take (interior) limit onto Γ :

$$u|_{\Gamma} = S\sigma$$

3. Enforce BC:

$$u|_{\Gamma} = f$$

4. Solve resulting linear system:

$$S\sigma = f$$

5. Obtain PDE solution in Ω by evaluating representation

BVP solve demo time

What to do?

1. Pick representation:

$$u(x) := (D\sigma)(x)$$

2. Take (interior) limit onto Γ :

$$u|_{\Gamma} = D\sigma - \sigma/2$$

3. Enforce BC:

$$u|_{\Gamma} = f$$

4. Solve resulting linear system:

$$(D - \operatorname{\mathsf{Id}}/2)\sigma = f$$

5. Obtain PDE solution in Ω by evaluating representation

2. Take (interior) limit onto Γ:

$$u|_{\Gamma} = D\sigma - \sigma/2$$

3. Enforce BC:

$$u|_{\Gamma} = f$$

4. Solve resulting linear system:

$$(D - \operatorname{Id}/2)\sigma = f$$

5. Obtain PDE solution in Ω by evaluating representation

Second-kind BVP solve demo time

Questions?

?

About this class What?

Image Credits

- Notebook: sxc.hu/abeall
- Question mark: sxc.hu/svilen001
- Camera: sxc.hu/Kolobsek