Early feedback
Today

Mini Spectral Theory

Harmonic Potential Theory
Outline

Mini Spectral Theory

Harmonic Potential Theory
Spectral theory: terminology

$A : X \to X$ bounded, λ is a ______ value:

Definition (Eigenvalue)

There exists an element $\varphi \in X$, $\varphi \neq 0$ with $A\varphi = \lambda\varphi$.
Spectral theory: terminology

$A : X \to X$ bounded, λ is a ______ value:

Definition (Eigenvalue)

There exists an element $\varphi \in X$, $\varphi \neq 0$ with $A\varphi = \lambda\varphi$.

Definition (Regular value)

The “resolvent” $(\lambda I - A)^{-1}$ exists and is bounded.
Spectral theory: terminology

$A: X \rightarrow X$ bounded, λ is a _____ value:

<table>
<thead>
<tr>
<th>Definition (Eigenvalue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists an element $\varphi \in X$, $\varphi \neq 0$ with $A\varphi = \lambda \varphi$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Regular value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The “resolvent” $(\lambda I - A)^{-1}$ exists and is bounded.</td>
</tr>
</tbody>
</table>

Can a value be regular and “eigen” at the same time?
Spectral theory: terminology

$A : X \rightarrow X$ bounded, λ is a _____ value:

Definition (Eigenvalue)

There exists an element $\varphi \in X$, $\varphi \neq 0$ with $A\varphi = \lambda\varphi$.

Definition (Regular value)

The “resolvent” $(\lambda I - A)^{-1}$ exists and is bounded.

Can a value be regular and “eigen” at the same time?

What’s special about ∞-dim here?
Spectral theory: terminology

\(A : X \to X \) bounded, \(\lambda \) is a _____ value:

<table>
<thead>
<tr>
<th>Definition (Eigenvalue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists an element (\varphi \in X, \varphi \neq 0) with (A\varphi = \lambda \varphi.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Regular value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The “resolvent” ((\lambda I - A)^{-1}) exists and is bounded.</td>
</tr>
</tbody>
</table>
Spectral theory: terminology

A : $X \rightarrow X$ bounded, λ is a _____ value:

<table>
<thead>
<tr>
<th>Definition (Eigenvalue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists an element $\varphi \in X$, $\varphi \neq 0$ with $A\varphi = \lambda \varphi$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Regular value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The “resolvent” $(\lambda I - A)^{-1}$ exists and is bounded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Resolvent set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(A) := { \lambda \text{ is regular} }$</td>
</tr>
</tbody>
</table>
Spectral theory: terminology

$A : X \to X$ bounded, λ is a ______ value:

<table>
<thead>
<tr>
<th>Definition (Eigenvalue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists an element $\varphi \in X$, $\varphi \neq 0$ with $A\varphi = \lambda \varphi$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Regular value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The “resolvent” $(\lambda I - A)^{-1}$ exists and is bounded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Resolvent set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(A) := { \lambda \text{ is regular} }$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Spectrum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(A) := \mathbb{C} \setminus \rho(A)$</td>
</tr>
</tbody>
</table>
Spectral Theory of Compact Operators

Theorem

\[A : X \rightarrow X \text{ compact linear operator, } X \text{ } \infty\text{-dim.} \]

Then:

- \(0 \in \sigma(A) \)

- \(\sigma(A) \{ 0 \} \) consists only of eigenvalues

- \(\sigma(A) \{ 0 \} \) is at most countable

- \(\sigma(A) \) has no accumulation point except for 0

Rephrase last two: how many eigenvalues with \(|\cdot| \geq R \)? How might that relate to compactness?
Theorem

\(A : X \to X \) compact linear operator, \(X \) \(\infty \)-dim.

Then:

- \(0 \in \sigma(A) \) (show!)
- \(\sigma(A) \setminus \{0\} \) consists only of eigenvalues
- \(\sigma(A) \setminus \{0\} \) is at most countable
- \(\sigma(A) \) has no accumulation point except for 0

Rephrase last two: how many eigenvalues with \(|\cdot| \geq R \)? How might that relate to compactness?
Theorem

Let $A : X \to X$ be a compact linear operator, where X is infinite-dimensional. Then:

- $0 \in \sigma(A)$ (show! Hint: $A^{-1}A$)
- $\sigma(A) \setminus \{0\}$ consists only of eigenvalues
- $\sigma(A)$ is at most countable
- $\sigma(A)$ has no accumulation point except for 0

Rephrase last two: how many eigenvalues with $|\cdot| \geq R$?

How might that relate to compactness?
Theorem

\[A : X \rightarrow X \text{ compact linear operator, } X \text{ infinite-dim.} \]

Then:

- \(0 \in \sigma(A)\)
- \(\sigma(A) \setminus \{0\} \text{ consists only of eigenvalues}\)

Rephrase last two: How many eigenvalues with \(|\cdot|\geq R\)?

How might that relate to compactness?
Theorem

\(A : X \rightarrow X \) compact linear operator, \(X \) \(\infty \)-dim.

Then:

- \(0 \in \sigma(A) \)
- \(\sigma(A) \setminus \{0\} \) consists only of eigenvalues (show!)

Rephrase last two: how many eigenvalues with \(|\cdot| \geq R \)? How might that relate to compactness?
Theorem

$A : X \to X$ compact linear operator, X ∞-dim.

Then:

- $0 \in \sigma(A)$
- $\sigma(A) \setminus \{0\}$ consists only of eigenvalues (show! Hint: Riesz)
Theorem

\[A : X \rightarrow X \text{ compact linear operator, } X \text{ infinite-dim.} \]

Then:

- \(0 \in \sigma(A) \)
- \(\sigma(A) \setminus \{0\} \text{ consists only of eigenvalues} \)
- \(\sigma(A) \setminus \{0\} \text{ is at most countable} \)
Theorem

$A : X \rightarrow X$ compact linear operator, $X \ \infty$-dim.

Then:

- $0 \in \sigma(A)$
- $\sigma(A) \setminus \{0\}$ consists only of eigenvalues
- $\sigma(A) \setminus \{0\}$ is at most countable
- $\sigma(A)$ has no accumulation point except for 0

Rephrase last two: how many eigenvalues with $|\cdot| \geq R$? How might that relate to compactness?
Spectral Theory of Compact Operators

Theorem

$A : X \rightarrow X$ compact linear operator, X ∞-dim.

Then:

- $0 \in \sigma(A)$
- $\sigma(A) \setminus \{0\}$ consists only of eigenvalues
- $\sigma(A) \setminus \{0\}$ is at most countable
- $\sigma(A)$ has no accumulation point except for 0

Rephrase last two: how many eigenvalues with $|\cdot| \geq R$?

A : \(X \to X \) compact linear operator, \(X \) \(\infty \)-dim.

Then:

- \(0 \in \sigma(A) \)
- \(\sigma(A) \setminus \{0\} \) consists only of eigenvalues
- \(\sigma(A) \setminus \{0\} \) is at most countable
- \(\sigma(A) \) has no accumulation point except for 0

Rephrase last two: how many eigenvalues with \(|\cdot| \geq R\)?
How might that relate to compactness?
Intuition about Compact Operators: recap

- What do they do to high-frequency data?
Intuition about Compact Operators: recap

- What do they do to high-frequency data?
- What do they do to low-frequency data?
Intuition about Compact Operators: recap

- What do they do to high-frequency data?
- What do they do to low-frequency data?
- Don’t confuse $I - A$ with A itself!
 (For example: $\dim N(A)$ vs $\dim N(I - A)$)
Outline

Mini Spectral Theory

Harmonic Potential Theory
Recap: Laplace fundamental solution

Definition (Harmonic function)

\[\triangle u = 0 \]

Fundamental solution:

\[G(x) = \begin{cases} \frac{1}{-2\pi} \log|x| & 2D \\ \frac{1}{4\pi} \frac{1}{|x|} & 3D \end{cases} \]

\[-\triangle G(x) = \delta(x) \rightarrow \text{exact meaning?} \]
Recap: Laplace fundamental solution

Definition (Harmonic function)

\[\triangle u = 0 \]

Fundamental solution:

\[G(x) = \begin{cases}
\frac{1}{-2\pi} \log |x| & \text{2D} \\
\frac{1}{4\pi} \frac{1}{|x|} & \text{3D}
\end{cases} \]

\[-\triangle G(x) = \delta(x) \rightarrow \text{exact meaning?} \]
Recap: Laplace fundamental solution

Definition (Harmonic function)

\[\triangle u = 0 \]

Fundamental solution:

\[
G(x) = \begin{cases}
\frac{1}{-2\pi} \log |x| & 2D \\
\frac{1}{4\pi} \frac{1}{|x|} & 3D
\end{cases}
\]

\(-\triangle G(x) = \delta(x) \rightarrow \text{exact meaning?}\)
Recap: Laplace fundamental solution

Definition (Harmonic function)

\[\triangle u = 0 \]

Fundamental solution:

\[G(x) = \begin{cases}
\frac{1}{-2\pi} \log |x| & \text{2D} \\
\frac{1}{4\pi} \frac{1}{|x|} & \text{3D}
\end{cases} \]

\[-\triangle G(x) = \delta(x) \rightarrow \text{exact meaning?}\]

\[\triangle \text{Re } f, \text{Im } f = 0 \]

i.e. harmonic for \(f \) differentiable in \(\mathbb{C} \). (identifying \(\mathbb{R}^2 \) with \(\mathbb{C} \))
Recap: Layer Potentials

\[(S\sigma)(x) := \int_{\Gamma} G(x - y)\sigma(y)ds_y\]

\[(S'\sigma)(x) := PV \hat{n} \cdot \nabla_x \int_{\Gamma} G(x - y)\sigma(y)ds_y\]

\[(D\sigma)(x) := PV \int_{\Gamma} \hat{n} \cdot \nabla_y G(x - y)\sigma(y)ds_y\]

\[(D'\sigma)(x) := f.p. \hat{n} \cdot \nabla_x \int_{\Gamma} \hat{n} \cdot \nabla_y G(x - y)\sigma(y)ds_y\]
Recap: Layer Potentials

\[(S\sigma)(x) := \int_{\Gamma} G(x - y)\sigma(y)ds_y\]

\[(S'\sigma)(x) := PV \hat{n} \cdot \nabla_x \int_{\Gamma} G(x - y)\sigma(y)ds_y\]

\[(D\sigma)(x) := PV \int_{\Gamma} \hat{n} \cdot \nabla_y G(x - y)\sigma(y)ds_y\]

\[(D'\sigma)(x) := f.p. \hat{n} \cdot \nabla_x \int_{\Gamma} \hat{n} \cdot \nabla_y G(x - y)\sigma(y)ds_y\]

Alternate ("standard") nomenclature:

<table>
<thead>
<tr>
<th>Ours</th>
<th>Theirs</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>V</td>
</tr>
<tr>
<td>D</td>
<td>K</td>
</tr>
<tr>
<td>S'</td>
<td>K'</td>
</tr>
<tr>
<td>D'</td>
<td>T</td>
</tr>
</tbody>
</table>
Recap: Layer Potentials

\[(S\sigma)(x) := \int_{\Gamma} G(x - y)\sigma(y)ds_y\]

\[(S'\sigma)(x) := PV \hat{n} \cdot \nabla_x \int_{\Gamma} G(x - y)\sigma(y)ds_y\]

\[(D\sigma)(x) := PV \int_{\Gamma} \hat{n} \cdot \nabla_y G(x - y)\sigma(y)ds_y\]

\[(D'\sigma)(x) := f.p. \hat{n} \cdot \nabla_x \int_{\Gamma} \hat{n} \cdot \nabla_y G(x - y)\sigma(y)ds_y\]

Alternate (“standard”) nomenclature:

<table>
<thead>
<tr>
<th>Ours</th>
<th>Theirs</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>V</td>
</tr>
<tr>
<td>D</td>
<td>K</td>
</tr>
</tbody>
</table>

Harmonic–where?
On the double layer again

Is the double layer *actually* weakly singular?
On the double layer again

Is the double layer actually weakly singular?

Definition (Weakly singular kernel)

- K defined, continuous everywhere except at $x = y$
- There exist $C > 0$, $\alpha \in (0, n - 1]$ such that
 \[|K(x, y)| \leq C|x - y|^{\alpha-n+1} \quad (x, y \in \partial\Omega, x \neq y) \]

\[\frac{\partial}{\partial x} \log(|0 - x|) = \frac{x}{x^2 + y^2} \]

- Singularity with approach on $y = 0$?
- Singularity with approach on $x = 0$?
On the double layer again

Is the double layer actually weakly singular?

Definition (Weakly singular kernel)

- K defined, continuous everywhere except at $x = y$
- There exist $C > 0$, $\alpha \in (0, n - 1]$ such that

\[
|K(x, y)| \leq C|x - y|^{\alpha-n+1} \quad (x, y \in \partial\Omega, x \neq y)
\]

\[
\frac{\partial}{\partial x} \log(|0 - x|) = \frac{x}{x^2 + y^2}
\]

So life is simultaneously worse and better than discussed.
On the double layer again

Is the double layer actually weakly singular?

Definition (Weakly singular kernel)

- K defined, continuous everywhere except at $x = y$
- There exist $C > 0$, $\alpha \in (0, n - 1]$ such that
 $$|K(x, y)| \leq C|x - y|^{\alpha-n+1} \quad (x, y \in \partial\Omega, \ x \neq y)$$

So life is simultaneously worse and better than discussed.

How about 3D? $(-x/|x|^3)$
On the double layer again

Is the double layer actually weakly singular?

<table>
<thead>
<tr>
<th>Definition (Weakly singular kernel)</th>
</tr>
</thead>
</table>

- K defined, continuous everywhere except at $x = y$
- There exist $C > 0$, $\alpha \in (0, n - 1]$ such that

$$|K(x, y)| \leq C|x - y|^\alpha - n + 1 \quad (x, y \in \partial\Omega, x \neq y)$$

So life is simultaneously worse and better than discussed.

How about 3D? $(-x/|x|^3)$

Would like an analytical tool that requires ‘less’ fanciness.
Questions?