Integral Equations and Fast Algorithms Lecture 14: BVPs continued

CS 598AK • October 10, 2013

Outline

Harmonic Potential Theory

Recap: Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])
$A: X \rightarrow X$ compact.
Then either:

- I - A and $I-A^{*}$ are bijective or:
- $\operatorname{dim} N(I-A)=\operatorname{dim} N\left(I-A^{*}\right)$
- $(I-A)(X)=N\left(I-A^{*}\right)^{\perp}$
- $\left(I-A^{*}\right)(X)=N(I-A)^{\perp}$

Jump relations: overview

Let $[X]=X_{+}-X_{-}$. (Normal points towards " + " $=$"exterior". $)$

$$
\begin{array}{rlll}
& & {[S \sigma]} & =0 \\
\lim _{x \rightarrow x_{0} \pm}\left(S^{\prime} \sigma\right)=\left(S^{\prime} \mp \frac{1}{2} I\right)(\sigma)\left(x_{0}\right) & \Rightarrow & {\left[S^{\prime} \sigma\right]} & =-\sigma \\
\lim _{x \rightarrow x_{0} \pm}(D \sigma)=\left(D \pm \frac{1}{2} I\right)(\sigma)\left(x_{0}\right) & \Rightarrow & {[D \sigma]} & =\sigma \\
& & {\left[D^{\prime} \sigma\right]} & =0
\end{array}
$$

See [1] and [2] for jumps of "non-standard" layer potentials.

Jump relations: overview

$$
\text { Let }[X]=X_{+}-X_{-} .(\text {Normal points towards " }+ \text { " }=\text { "exterior" } .)
$$

$$
\begin{array}{rlll}
& & {[S \sigma]} & =0 \\
\lim _{x \rightarrow x_{0} \pm}\left(S^{\prime} \sigma\right)=\left(S^{\prime} \mp \frac{1}{2} I\right)(\sigma)\left(x_{0}\right) & \Rightarrow & {\left[S^{\prime} \sigma\right]} & =-\sigma \\
\lim _{x \rightarrow x_{0} \pm}(D \sigma)=\left(D \pm \frac{1}{2} I\right)(\sigma)\left(x_{0}\right) & \Rightarrow & {[D \sigma]} & =\sigma \\
& & {\left[D^{\prime} \sigma\right]} & =0
\end{array}
$$

See [1] and [2] for jumps of "non-standard" layer potentials.

Spot the bonus fact.

Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with $\Delta u=0$ such that

	Dirichlet	Neumann
Int.	$\lim _{x \rightarrow \partial \Omega-} u(x)=g$	$\lim _{x \rightarrow \partial \Omega-\hat{n} \cdot \nabla u(x)=g}$
Ext.	$\lim _{x \rightarrow \partial \Omega+} u(x)=g$	$\lim _{x \rightarrow \partial \Omega+\hat{n} \cdot \nabla u(x)=g}$

with $g \in C(\partial \Omega)$.

Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with $\Delta u=0$ such that
$\left.\left.\begin{array}{c|l|l} & \text { Dirichlet } & \text { Neumann } \\ \hline \text { Int. } & \lim _{x \rightarrow \partial \Omega-} u(x)=g & \lim _{x \rightarrow \partial \Omega-\hat{n} \cdot \nabla u(x)=g} \\ \hline \text { Ext. } & \lim _{x \rightarrow \partial \Omega+} u(x)=g & \lim _{x \rightarrow \partial \Omega+\hat{n} \cdot \nabla u(x)=g} \\ u(x)=\left\{\begin{array}{ll}O(1) & 2 D \\ o(1) & 3 D\end{array} \text { as }|x| \rightarrow \infty\right.\end{array}\right) \begin{array}{ll}u(x)=o(1) \text { as }|x| \rightarrow \infty\end{array}\right]$
with $g \in C(\partial \Omega)$.

Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with $\Delta u=0$ such that

	Dirichlet	Neumann
Int.	$\lim _{x \rightarrow \partial \Omega-} u(x)=g$ unique	$\lim _{x \rightarrow \partial \Omega-} \hat{n} \cdot \nabla u(x)=g$ (O) may differ by constant
Ext.	$\begin{aligned} & \lim _{x \rightarrow \partial \Omega+} u(x)=g \\ & u(x)=\left\{\begin{array}{ll} O(1) & 2 D \\ O(1) & 3 D \end{array} \text { as }\|x\| \rightarrow \infty\right. \end{aligned}$ unique	$\begin{aligned} & \lim _{x \rightarrow \partial \Omega+\hat{n} \cdot \nabla u(x)=g} \\ & u(x)=o(1) \text { as }\|x\| \rightarrow \infty \end{aligned}$ unique

with $g \in C(\partial \Omega)$.

Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with $\Delta u=0$ such that

	Dirichlet	Neumann
Int.	$\lim _{x \rightarrow \partial \Omega-} u(x)=g$	$\lim _{x \rightarrow \partial \Omega-\hat{n} \cdot \nabla u(x)=g}$
	\oplus unique	Θ may differ by constant

with $g \in C(\partial \Omega)$.
What does $f(x)=O(1)$ mean?
(and $f(x)=o(1) ?$)

Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with $\Delta u=0$ such that

	Dirichlet	Neumann
Int.	$\lim _{x \rightarrow \partial \Omega-}$ unique	$\lim _{x \rightarrow \partial \Omega_{-} \hat{n} \cdot \nabla u(x)=g}$ © may differ by constant
Ext.	$\begin{aligned} & \lim _{x \rightarrow \partial \Omega+} \\ & u(x)=\left\{\begin{array}{l} O(1 \\ o(1 \end{array}\right. \end{aligned}$ unique $=C(\partial \Omega) .$	$\begin{aligned} & \lim _{x \rightarrow \partial \Omega+} \hat{n} \cdot \nabla u(x)=g \\ & u(x)=o(1) \text { as }\|x\| \rightarrow \infty \end{aligned}$ $f(x)=O(1)$ mean? $o(1) ?)$ queness: why? mum principle)

Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with $\Delta u=0$ such that

Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with Δ
What does $f(x)=O(1)$ mean?
Dirichlet (and $f(x)=o(1)$?)
Int. $\lim _{x \rightarrow \partial \Omega-} u(x$
Dirichlet uniqueness: why?
(Hint: Maximum principle)
$u(x)=\left\{\begin{array}{l}O(1) \\ O(1)\end{array}\right.$
\oplus unique
with $g \in C(\partial \Omega)$.
Neumann uniqueness: why?
(Hint: Green's first theorem)
$\int_{\Omega} u \Delta v+\nabla u \cdot \nabla v=\int_{\partial \Omega} u(\hat{n} \cdot \nabla v) d s$

Missing assumptions on Ω ?

Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with $ム$
Dirichlet
Int. $\lim _{x \rightarrow \partial \Omega-} u(x$
\oplus unique
Ext. $\lim _{x \rightarrow \partial \Omega+} u(x$
$u(x)=\left\{\begin{array}{l}O(1) \\ O(1)\end{array}\right.$
\oplus unique

What does $f(x)=O(1)$ mean? (and $f(x)=o(1) ?$)

Dirichlet uniqueness: why?
(Hint: Maximum principle)
Neumann uniqueness: why? (Hint: Green's first theorem)

$$
\int_{\Omega} u \Delta v+\nabla u \cdot \nabla v=\int_{\partial \Omega} u(\hat{n} \cdot \nabla v) d s
$$

Missing assumptions on Ω ?
What's a DtN map?

Boundary

Find $u \in C(\bar{\Omega})$ with \checkmark

Dirichlet

Int. $\quad \lim _{x \rightarrow \partial \Omega_{-}} u(\lambda$
\oplus unique
Ext. $\quad \lim _{x \rightarrow \partial \Omega+} u(x$ $u(x)=\left\{\begin{array}{l}O(1) \\ o(1)\end{array}\right.$
\oplus unique with $g \in C(\partial \Omega)$.

What does $f(x)=O(1)$ mean? (and $f(x)=o(1)$?)

Dirichlet uniqueness: why? (Hint: Maximum principle)

Neumann uniqueness: why? (Hint: Green's first theorem)
$\int_{\Omega} u \Delta v+\nabla u \cdot \nabla v=\int_{\partial \Omega} u(\hat{n} \cdot \nabla v) d s$

Missing assumptions on Ω ?
What's a DtN map?
Find IE representations for each.

Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

What to show?

Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

What to show?
Start with $1 / 2-D$. What BVP?

Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

What to show?
Start with $1 / 2-D$. What BVP?
Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

What to show?
Start with $1 / 2-D$. What BVP?
Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: $1 / 2+D$ on exterior.

Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

What to show?
Start with $1 / 2-D$. What BVP?
Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: $1 / 2+D$ on exterior.
Show φ constant. Nullspace identified?

Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

What to show?
Start with $I / 2-D$. What BVP?
Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.
Next: $1 / 2+D$ on ext $=$
Show φ constant. Nul

Extra conditions on RHS?
$(I-A)(X)=N\left(I-A^{*}\right)^{\perp}$

Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I / 2-D)=N\left(I / 2-S^{\prime}\right)=\{0\}$
- $N(I / 2+D)=\operatorname{span}\{1\}, N\left(I / 2+S^{\prime}\right)=\operatorname{span}\{\psi\}$, where $\int \psi \neq 0$.

What to show?
Start with $I / 2-D$. What BVP?
Hint: Use jump relations_use BVP_uniameness_use_hoth_kinds_of boundary data.

Next: I/2 $+D$ on ext \oint
Show φ constant. Nul

Extra conditions on RHS?
$(I-A)(X)=N\left(I-A^{*}\right)^{\perp}$
\rightarrow "Clean" Existence for 3 out of 4 .

Patching up Exterior Dirichlet

Problem: $N\left(I / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.

Patching up Exterior Dirichlet

Problem: $N\left(1 / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

Patching up Exterior Dirichlet

Problem: $N\left(1 / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?

Patching up Exterior Dirichlet

Problem: $N\left(1 / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?

Patching up Exterior Dirichlet

Problem: $N\left(1 / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?

Patching up Exterior Dirichlet

Problem: $N\left(1 / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $u=0$ on exterior.

Patching up Exterior Dirichlet

Problem: $N\left(I / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $u=0$ on exterior.
- $|x|^{n-2} u(x)=$? on exterior

Patching up Exterior Dirichlet

Problem: $N\left(1 / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $u=0$ on exterior.
- $|x|^{n-2} u(x)=$? on exterior
- Thus $\int \varphi=0$. Contribution of the second term?

Patching up Exterior Dirichlet

Problem: $N\left(I / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $u=0$ on exterior.
- $|x|^{n-2} u(x)=$? on exterior
- Thus $\int \varphi=0$. Contribution of the second term?
- $\varphi / 2+D \varphi=0$, i.e. $\varphi \in N(I / 2+D)=$?

Patching up Exterior Dirichlet

Problem: $N\left(I / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $u=0$ on exterior.
- $|x|^{n-2} u(x)=$? on exterior
- Thus $\int \varphi=0$. Contribution of the second term?
- $\varphi / 2+D \varphi=0$, i.e. $\varphi \in N(I / 2+D)=$?
- Existence/uniqueness?

Patching up Exterior Dirichlet

Problem: $N\left(1 / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $u=0$ on exterior.
- $|x|^{n-2} u(x)=$? on exterior
- Thus $\int \varphi=0$. Contribution of the second term?
- $\varphi / 2+D \varphi=0$, i. \rightarrow Existence for 4 out of 4 .

Patching up Exterior Dirichlet

Problem: $N\left(1 / 2+S^{\prime}\right)=\{\psi\} \ldots$ but we do not know ψ.
Use a different kernel:

$$
\hat{n} \cdot \nabla_{y} G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_{y} G(x, y)+\frac{1}{|x|^{n-2}}
$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $\mu=0$ on exterior.
- $|x|^{n-2} u(x)=$? or \rightarrow Existence for 4 out of 4 .
- Thus $\int \varphi=0$. C
- $\varphi / 2+D \varphi=0$, i.
- Existence/unique

Remaining key shortcoming of IE theory for BVPs?

Questions?

?

