Integral Equations and Fast Algorithms Lecture 14: BVPs continued

CS 598AK · October 10, 2013

Outline

Harmonic Potential Theory

Recap: Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

 $A: X \to X$ compact.

Then either:

or:

• dim
$$N(I - A) = \dim N(I - A^*)$$

•
$$(I - A)(X) = N(I - A^*)^{\perp}$$

•
$$(I - A^*)(X) = N(I - A)^{\perp}$$

Jump relations: overview

Let $[X] = X_{+} - X_{-}$. (Normal points towards "+"="exterior".)

$$[S\sigma] = 0$$
$$\lim_{x \to x_0 \pm} (S'\sigma) = \left(S' \mp \frac{1}{2}I\right)(\sigma)(x_0) \qquad \Rightarrow \qquad [S'\sigma] = -\sigma$$
$$\lim_{x \to x_0 \pm} (D\sigma) = \left(D \pm \frac{1}{2}I\right)(\sigma)(x_0) \qquad \Rightarrow \qquad [D\sigma] = \sigma$$
$$[D'\sigma] = 0$$

See [1] and [2] for jumps of "non-standard" layer potentials.

Jump relations: overview

Let $[X] = X_{+} - X_{-}$. (Normal points towards "+"="exterior".)

$$[S\sigma] = 0$$
$$\lim_{x \to x_0 \pm} (S'\sigma) = \left(S' \mp \frac{1}{2}I\right)(\sigma)(x_0) \qquad \Rightarrow \qquad [S'\sigma] = -\sigma$$
$$\lim_{x \to x_0 \pm} (D\sigma) = \left(D \pm \frac{1}{2}I\right)(\sigma)(x_0) \qquad \Rightarrow \qquad [D\sigma] = \sigma$$
$$[D'\sigma] = 0$$

See [1] and [2] for jumps of "non-standard" layer potentials.

Spot the bonus fact.

Find $u \in C(\overline{\Omega})$ with riangle u = 0 such that

	Dirichlet	Neumann
Int.	$\lim_{x\to\partial\Omega^-} u(x) = g$	$\lim_{x\to\partial\Omega^-}\hat{n}\cdot\nabla u(x)=g$
Ext.	$\lim_{x \to \partial \Omega^+} u(x) = g$	$\lim_{x\to\partial\Omega+}\hat{n}\cdot\nabla u(x)=g$

with $g \in C(\partial \Omega)$.

Find $u \in C(\overline{\Omega})$ with riangle u = 0 such that

	Dirichlet	Neumann
Int.	$\lim_{x\to\partial\Omega^-} u(x) = g$	$\lim_{x\to\partial\Omega^-}\hat{n}\cdot\nabla u(x)=g$
Ext.	$\lim_{x\to\partial\Omega+}u(x)=g$	$\lim_{x\to\partial\Omega+}\hat{n}\cdot\nabla u(x)=g$
	$u(x) = egin{cases} O(1) & 2D \ o(1) & 3D \end{bmatrix}$ as $ x o \infty$	$u(x)=o(1)$ as $ x ightarrow\infty$

with $g \in C(\partial \Omega)$.

Find $u \in C(\overline{\Omega})$ with riangle u = 0 such that

	Dirichlet	Neumann
Int.	$\lim_{x\to\partial\Omega^-}u(x)=g$	$\lim_{x\to\partial\Omega^-}\hat{n}\cdot\nabla u(x)=g$
	🕀 unique	• may differ by constant
Ext.	$\lim_{x\to\partial\Omega^+} u(x) = g$	$\lim_{x\to\partial\Omega^+}\hat{n}\cdot\nabla u(x)=g$
	$u(x) = \begin{cases} O(1) & 2D\\ o(1) & 3D \end{cases} \text{ as } x \to \infty$	$u(x)=o(1)$ as $ x o\infty$
	• unique	unique

with $g \in C(\partial \Omega)$.

Find $u \in \mathcal{C}(\bar{\Omega})$ with riangle u = 0 such that

	Dirichlet	Neumann
Int.	$\lim_{x\to\partial\Omega^-}u(x)=g$	$\lim_{x\to\partial\Omega^-}\hat{n}\cdot\nabla u(x)=g$
	🕀 unique	• may differ by constant
Ext.	$\lim_{x\to\partial\Omega^+} u(x) = g$	$\lim_{x\to\partial\Omega^+}\hat{n}\cdot\nabla u(x)=g$
	$u(x) = egin{cases} O(1) & 2D \ o(1) & 3D \end{bmatrix}$ as $ x o \infty$	$u(x)=o(1)$ as $ x o\infty$
	unique	Unique

with $g \in C(\partial \Omega)$.

What does f(x) = O(1) mean? (and f(x) = o(1)?)

Find $u \in C(\overline{\Omega})$ with riangle u = 0 such that

	Dirichlet		Neumann
Int.	$\lim_{x\to\partial\Omega^-} u(x) = g$		$\lim_{x\to\partial\Omega^-}\hat{n}\cdot\nabla u(x)=g$
	🕀 unique		• may differ by constant
Ext.	$\lim_{x\to\partial\Omega+}u(x)$	(x) = g	$\lim_{x\to\partial\Omega+}\hat{n}\cdot\nabla u(x)=g$
	$u(x) = \begin{cases} O(1) & z \\ O(1) & z \end{cases}$	2D as $ x \to \infty$	$u(x)=o(1)$ as $ x ightarrow\infty$
	unique	What does	f(x) = O(1) mean?
with $g\in C(\partial\Omega)$.		(and f(x) =	= o(1)?)
		Dirichlet un <i>(Hint: Max</i>	iqueness: why? imum principle)

Find
$$u\in \mathcal{C}(ar{\Omega})$$
 with $riangle u=0$ such that

	Dirichlet	Noumann
Int.	$\lim_{x\to\partial\Omega^-} u(x)$	What does $f(x) = O(1)$ mean?
	🕀 unique	(and f(x) = o(1)?)
Ext.	$\lim_{x \to \partial \Omega +} u(x) = \begin{cases} O(1) \\ o(1) \end{cases}$	Dirichlet uniqueness: why? (Hint: Maximum principle)
with g	$igoplus$ unique $\in C(\partial\Omega).$	Neumann uniqueness: why? (Hint: Green's first theorem) $\int_{\Omega} u \triangle v + \nabla u \cdot \nabla v = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) ds$

Find $u \in C(\overline{\Omega})$ with Δ Dirichlet $\lim_{x\to\partial\Omega^-} u(x)$ Int. unique Ext. $\lim_{x\to\partial\Omega^+} u(x)$ $u(x) = \begin{cases} O(1) \\ o(1) \end{cases}$ unique with $g \in C(\partial \Omega)$.

What does f(x) = O(1) mean? (and f(x) = o(1)?)

Dirichlet uniqueness: why? (*Hint: Maximum principle*)

Neumann uniqueness: why? (Hint: Green's first theorem)

$$\int_{\Omega} u \triangle v + \nabla u \cdot \nabla v = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) ds$$

Missing assumptions on Ω ?

What does f(x) = O(1) mean? (and f(x) = o(1)?)

Dirichlet uniqueness: why? (*Hint: Maximum principle*)

Neumann uniqueness: why? (Hint: Green's first theorem)

$$\int_{\Omega} u \triangle v + \nabla u \cdot \nabla v = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) ds$$

Missing assumptions on Ω ?

What's a DtN map?

Find IE representations for each.

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, N(I/2 + S') = \text{span}\{\psi\},$ where $\int \psi \neq 0.$

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, N(I/2 + S') = \text{span}\{\psi\},$ where $\int \psi \neq 0.$

What to show?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, N(I/2 + S') = \text{span}\{\psi\},$ where $\int \psi \neq 0.$

What to show?

Start with I/2 - D. What BVP?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, N(I/2 + S') = \text{span}\{\psi\},$ where $\int \psi \neq 0.$

What to show?

Start with I/2 - D. What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, N(I/2 + S') = \text{span}\{\psi\},$ where $\int \psi \neq 0.$

What to show?

Start with I/2 - D. What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: I/2 + D on exterior.

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, N(I/2 + S') = \text{span}\{\psi\},$ where $\int \psi \neq 0.$

What to show?

Start with I/2 - D. What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: I/2 + D on exterior.

Show φ constant. Nullspace identified?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, N(I/2 + S') = \text{span}\{\psi\},$ where $\int \psi \neq 0.$

What to show?

Start with I/2 - D. What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: I/2 + D on externation

Show φ constant. Nul

Extra conditions on RHS? $(I - A)(X) = N(I - A^*)^{\perp}$

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 D) = N(I/2 S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, N(I/2 + S') = \text{span}\{\psi\},$ where $\int \psi \neq 0.$

What to show?

Start with I/2 - D. What BVP?

Hint: Use jump relations use <u>BVP uniqueness</u> use <u>both kinds of</u> boundary data.

Next: I/2 + D on exte

Show φ constant. Nul

Extra conditions on RHS?
$$(I - A)(X) = N(I - A^*)^{\perp}$$

 \rightarrow "Clean" Existence for 3 out of 4.

Patching up Exterior Dirichlet Problem: $N(I/2 + S') = \{\psi\}...$ but we do not know ψ .

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

Note: Singularity only at origin! (assumed $\in \Omega$)

• 2D behavior? 3D behavior?

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce u = 0 on exterior.

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce u = 0 on exterior.

•
$$|x|^{n-2}u(x) = ?$$
 on exterior

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce *u* = 0 on exterior.

•
$$|x|^{n-2}u(x) = ?$$
 on exterior

• Thus $\int \varphi = 0$. Contribution of the second term?

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce *u* = 0 on exterior.

•
$$|x|^{n-2}u(x) = ?$$
 on exterior

- Thus $\int \varphi = 0$. Contribution of the second term?
- $\varphi/2 + D\varphi = 0$, i.e. $\varphi \in N(I/2 + D) = ?$

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce *u* = 0 on exterior.

•
$$|x|^{n-2}u(x) = ?$$
 on exterior

- Thus $\int \varphi = 0$. Contribution of the second term?
- $\varphi/2 + D\varphi = 0$, i.e. $\varphi \in N(I/2 + D) = ?$
- Existence/uniqueness?

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce u = 0 on exterior.

•
$$|x|^{n-2}u(x) = ?$$
 on exterior

- Thus $\int \varphi = 0$. Contribution of the second term?
- φ/2 + Dφ = 0, i.
 Existence/unique

$$\rightarrow$$
 Existence for 4 out of 4.

$$\hat{n} \cdot
abla_y G(x,y) \longrightarrow \hat{n} \cdot
abla_y G(x,y) + rac{1}{|x|^{n-2}}$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?

• Jump condition? Exterior limit? Deduce $\mu = 0$ on exterior.

- $|x|^{n-2}u(x) = ?$ or
- Thus $\int \varphi = 0$. Co

•
$$\varphi/2 + D\varphi = 0$$
, i

Existence/unique

 \rightarrow Existence for 4 out of 4.

Remaining key shortcoming of IE theory for BVPs?

Questions?

?