Integral Equations and Fast Algorithms
Lecture 14: BVPs continued

CS 598AK · October 10, 2013
Outline

Harmonic Potential Theory
Recap: Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

Let \(A : X \to X \) be compact.

Then either:

1. \(I - A \) and \(I - A^* \) are bijective

or:

2. \(\dim N(I - A) = \dim N(I - A^*) \)
3. \((I - A)(X) = N(I - A^*)^\perp \)
4. \((I - A^*)(X) = N(I - A)^\perp \)
Jump relations: overview

Let \([X] = X_+ - X_-\). (Normal points towards “+” = “exterior”.)

\[
\lim_{x \to x_0 \pm} (S'\sigma) = \left(S' \mp \frac{1}{2} I\right)(\sigma)(x_0) \Rightarrow [S'\sigma] = -\sigma
\]

\[
\lim_{x \to x_0 \pm} (D\sigma) = \left(D \pm \frac{1}{2} I\right)(\sigma)(x_0) \Rightarrow [D\sigma] = \sigma
\]

\[
[S\sigma] = 0
\]

\[
[D'\sigma] = 0
\]

Let \([X] = X_+ - X_-.\) (Normal points towards “+” = “exterior”.)

\[
\lim_{x \to x_0^\pm} (S'\sigma) = \left(S' \mp \frac{1}{2} I \right)(\sigma)(x_0) \quad \Rightarrow \quad [S'\sigma] = -\sigma
\]

\[
\lim_{x \to x_0^\pm} (D\sigma) = \left(D \pm \frac{1}{2} I \right)(\sigma)(x_0) \quad \Rightarrow \quad [D\sigma] = \sigma
\]

\[
[S\sigma] = 0
\]

\[
[D'\sigma] = 0
\]

Spot the bonus fact.
Boundary Value Problems, Uniqueness

Find \(u \in C(\bar{\Omega}) \) with \(\triangle u = 0 \) such that

<table>
<thead>
<tr>
<th></th>
<th>Dirichlet</th>
<th>Neumann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.</td>
<td>(\lim_{x \to \partial \Omega_-} u(x) = g)</td>
<td>(\lim_{x \to \partial \Omega_-} \hat{n} \cdot \nabla u(x) = g)</td>
</tr>
<tr>
<td>Ext.</td>
<td>(\lim_{x \to \partial \Omega_+} u(x) = g)</td>
<td>(\lim_{x \to \partial \Omega_+} \hat{n} \cdot \nabla u(x) = g)</td>
</tr>
</tbody>
</table>

with \(g \in C(\partial \Omega) \).
Find $u \in C(\bar{\Omega})$ with $\triangle u = 0$ such that

<table>
<thead>
<tr>
<th></th>
<th>Dirichlet</th>
<th>Neumann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.</td>
<td>$\lim_{x \to \partial \Omega^-} u(x) = g$</td>
<td>$\lim_{x \to \partial \Omega^-} \hat{n} \cdot \nabla u(x) = g$</td>
</tr>
<tr>
<td>Ext.</td>
<td>$\lim_{x \to \partial \Omega^+} u(x) = g$</td>
<td>$\lim_{x \to \partial \Omega^+} \hat{n} \cdot \nabla u(x) = g$</td>
</tr>
<tr>
<td></td>
<td>$u(x) = \begin{cases} O(1) & 2D \ o(1) & 3D \end{cases}$ as $</td>
<td>x</td>
</tr>
</tbody>
</table>

with $g \in C(\partial \Omega)$.

What does $f(x) = O(1)$ mean? (and $f(x) = o(1)$?)
Find $u \in C(\bar{\Omega})$ with $\triangle u = 0$ such that

<table>
<thead>
<tr>
<th>Dirichlet</th>
<th>Neumann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.</td>
<td>$\lim_{x \to \partial \Omega^-} u(x) = g$</td>
</tr>
<tr>
<td>+ unique</td>
<td></td>
</tr>
<tr>
<td>Ext.</td>
<td>$\lim_{x \to \partial \Omega^+} u(x) = g$</td>
</tr>
<tr>
<td>$u(x) = \begin{cases} O(1) & 2D \ o(1) & 3D \end{cases}$ as $</td>
<td>x</td>
</tr>
<tr>
<td>+ unique</td>
<td>+ unique</td>
</tr>
</tbody>
</table>

with $g \in C(\partial \Omega)$.

Laplace
Find \(u \in C(\bar{\Omega}) \) with \(\triangle u = 0 \) such that

<table>
<thead>
<tr>
<th>(\text{Dirichlet})</th>
<th>(\text{Neumann})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Int.})</td>
<td>(\lim_{x \to \partial \Omega^-} u(x) = g)</td>
</tr>
<tr>
<td>+ unique</td>
<td>+ unique</td>
</tr>
<tr>
<td>(\text{Ext.})</td>
<td>(\lim_{x \to \partial \Omega^+} u(x) = g)</td>
</tr>
<tr>
<td>(u(x) = \begin{cases} O(1) & \text{2D} \ o(1) & \text{3D} \end{cases} \text{ as }</td>
<td>x</td>
</tr>
<tr>
<td>+ unique</td>
<td>+ unique</td>
</tr>
</tbody>
</table>

with \(g \in C(\partial \Omega) \).

What does \(f(x) = O(1) \) mean? (and \(f(x) = o(1) \)?)
Boundary Value Problems, Uniqueness

Find $u \in C(\bar{\Omega})$ with $\triangle u = 0$ such that

<table>
<thead>
<tr>
<th>Dirichlet</th>
<th>Neumann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.</td>
<td>Neumann</td>
</tr>
<tr>
<td>$\lim_{x \to \partial \Omega^-} u(x) = g$</td>
<td>$\lim_{x \to \partial \Omega^-} \hat{n} \cdot \nabla u(x) = g$</td>
</tr>
<tr>
<td>unique</td>
<td>may differ by constant</td>
</tr>
<tr>
<td>Ext.</td>
<td></td>
</tr>
<tr>
<td>$\lim_{x \to \partial \Omega^+} u(x) = g$</td>
<td>$\lim_{x \to \partial \Omega^+} \hat{n} \cdot \nabla u(x) = g$</td>
</tr>
<tr>
<td>$u(x) = \begin{cases} O(1) & \text{2D} \ o(1) & \text{3D} \end{cases}$ as $</td>
<td>x</td>
</tr>
<tr>
<td>unique</td>
<td></td>
</tr>
</tbody>
</table>

with $g \in C(\partial \Omega)$.

What does $f(x) = O(1)$ mean? (and $f(x) = o(1)$?)

Dirichlet uniqueness: why? (Hint: Maximum principle)
Find $u \in C(\bar{\Omega})$ with $\triangle u = 0$ such that

<table>
<thead>
<tr>
<th>Dirichlet</th>
<th>Neumann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.</td>
<td>$\lim_{x \to \partial \Omega^-} u(x) = g$ (unique)</td>
</tr>
<tr>
<td>Ext.</td>
<td>$\lim_{x \to \partial \Omega^+} u(x) = g$ (unique)</td>
</tr>
</tbody>
</table>

with $g \in C(\partial \Omega)$.

What does $f(x) = O(1)$ mean? (and $f(x) = o(1)$?)

Dirichlet uniqueness: why? (Hint: Maximum principle)

Neumann uniqueness: why? (Hint: Green's first theorem)

\[\int_{\Omega} u \triangle v + \nabla u \cdot \nabla v = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) ds \]
Boundary Value Problems, Uniqueness

Find \(u \in C(\bar{\Omega}) \) with \(\triangle u = 0 \) such that

\[
\text{Dirichlet}\quad \lim_{x \to \partial \Omega^-} u(x) = g
\]

\[\downarrow \text{unique}\]

\[
\text{Ext.}\quad \lim_{x \to \partial \Omega^+} u(x) = h
\]

\[\downarrow \text{unique}\]

with \(g \in C(\partial \Omega) \).

What does \(f(x) = O(1) \) mean? (and \(f(x) = o(1) \)?)

Dirichlet uniqueness: why? (Hint: Maximum principle)

Neumann uniqueness: why? (Hint: Green’s first theorem)

\[
\int_{\Omega} u \nabla v + \nabla u \cdot \nabla v = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) ds
\]

Missing assumptions on \(\Omega \)?
Find $u \in C(\bar{\Omega})$ with $\Delta u = 0$ such that

<table>
<thead>
<tr>
<th>Int.</th>
<th>$\lim_{x \to \partial\Omega^-} u(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\pm unique</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ext.</th>
<th>$\lim_{x \to \partial\Omega^+} u(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\pm unique</td>
</tr>
</tbody>
</table>

with $g \in C(\partial \Omega)$.

What does $f(x) = O(1)$ mean? (and $f(x) = o(1)$?)

Dirichlet uniqueness: why?
(Hint: Maximum principle)

Neumann uniqueness: why?
(Hint: Green’s first theorem)

$$\int_{\Omega} u \Delta v + \nabla u \cdot \nabla v = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) \, ds$$

Missing assumptions on Ω?

What’s a DtN map?
Find \(u \in C(\bar{\Omega}) \) with \(\Delta u = 0 \) such that

<table>
<thead>
<tr>
<th>\textbf{Dirichlet}</th>
<th>\textbf{Int.}</th>
<th>(\lim_{x \to \partial \Omega^-} u(x) = g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\textbf{\text{+ unique}}) (\text{with } g \in C(\partial \Omega).)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\textbf{Ext.}</th>
<th>(\lim_{x \to \partial \Omega^+} u(x) = g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u(x) = \begin{cases} O(1) \ o(1) \end{cases})</td>
<td>(\textbf{\text{+ unique}})</td>
</tr>
</tbody>
</table>

What does \(f(x) = O(1) \) mean? (and \(f(x) = o(1) \)?)

Dirichlet uniqueness: why?
(*Hint: Maximum principle*)

Neumann uniqueness: why?
(*Hint: Green's first theorem*)

\[\int_{\Omega} u \Delta v + \nabla u \cdot \nabla v = \int_{\partial \Omega} u(\hat{n} \cdot \nabla v) ds \]

Missing assumptions on \(\Omega \)?

What's a DtN map?

Find IE representations for each.
Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 - D) = N(I/2 - S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}$, $N(I/2 + S') = \text{span}\{\psi\}$, where $\int \psi \neq 0$.
Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- \(N(I/2 - D) = N(I/2 - S') = \{0\} \)
- \(N(I/2 + D) = \text{span}\{1\}, \ N(I/2 + S') = \text{span}\{\psi\}, \text{where } \int \psi \neq 0. \)

What to show?

Start with \(I/2 - D \). What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: \(I/2 + D \) on exterior. Show \(\phi \) constant. Nullspace identified?

Extra conditions on RHS?

\((I - A)(X) = N(I - A^*) \perp \) Laplace
Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- \(N(I/2 - D) = N(I/2 - S') = \{0\} \)
- \(N(I/2 + D) = \text{span}\{1\}, \ N(I/2 + S') = \text{span}\{\psi\}, \) where \(\int \psi \neq 0. \)

What to show?

Start with \(I/2 - D \). What BVP?
Theorem (Nullspaces [Kress LIE Thm 6.20])

- $N(I/2 - D) = N(I/2 - S') = \{0\}$
- $N(I/2 + D) = \text{span}\{1\}, \quad N(I/2 + S') = \text{span}\{\psi\}$, where $\int \psi \neq 0$.

What to show?

Start with $I/2 - D$. What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.
Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- \(N(I/2 - D) = N(I/2 - S') = \{0\} \)
- \(N(I/2 + D) = \text{span}\{1\}, \; N(I/2 + S') = \text{span}\{\psi\} \),
 where \(\int \psi \neq 0 \).

What to show?

Start with \(I/2 - D \). What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: \(I/2 + D \) on exterior.
Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- \(N(I/2 - D) = N(I/2 - S') = \{0\} \)
- \(N(I/2 + D) = \text{span}\{1\}, \ N(I/2 + S') = \text{span}\{\psi\}, \)
 where \(\int \psi \neq 0. \)

What to show?

Start with \(I/2 - D. \) What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: \(I/2 + D \) on exterior.

Show \(\varphi \) constant. Nullspace identified?
Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- \(N(I/2 - D) = N(I/2 - S') = \{0\} \)
- \(N(I/2 + D) = \text{span}\{1\}, \ N(I/2 + S') = \text{span}\{\psi\}, \) where \(\int \psi \neq 0. \)

What to show?

Start with \(I/2 - D. \) What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: \(I/2 + D \) on exterior.

Show \(\varphi \) constant. Nullspace identified?

Extra conditions on RHS?

\((I - A)(X) = N(I - A^*)^\perp \)
Uniqueness of IE solutions?

Theorem (Nullspaces [Kress LIE Thm 6.20])

- \(N(I/2 - D) = N(I/2 - S') = \{0\} \)
- \(N(I/2 + D) = \text{span}\{1\}, \quad N(I/2 + S') = \text{span}\{\psi\}, \)
 where \(\int \psi \neq 0. \)

What to show?

Start with \(I/2 - D \). What BVP?

Hint: Use jump relations, use BVP uniqueness, use both kinds of boundary data.

Next: \(I/2 + D \) on exterior.

Show \(\varphi \) constant. Nullspace identified?

Extra conditions on RHS?

\[
(I - A)(X) = N(I - A^*)^\perp
\]

→ “Clean” Existence for 3 out of 4.
Patching up Exterior Dirichlet Problem: $N(I/2 + S') = \{\psi\} \ldots$ but we do not know ψ.

Use a different kernel:

$\hat{n} \cdot \nabla y G(x, y) \rightarrow \hat{n} \cdot \nabla y G(x, y) + 1 |x|^{n-2}$

Note: Singularity only at origin! (assumed $\in \Omega$)

• 2D behavior? 3D behavior?
• Still a solution of the PDE?
• Compact?
• Jump condition? Exterior limit? Deduce $u(x) = 0$ on exterior.
• $|x|^{n-2} u(x) = ?$ on exterior
• Thus $\hat{\psi} = 0$. Contribution of the second term?
• $\psi/2 + \partial \psi = 0$, i.e. $\psi \in N(I/2 + D) = ?$
• Existence/uniqueness?

\rightarrow Existence for 4 out of 4.
Patching up Exterior Dirichlet Problem: \[N(I/2 + S') = \{ \psi \} \ldots \text{but we do not know } \psi. \]

Use a different kernel:

\[\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}} \]

Note: Singularity only at origin! (assumed \(\in \Omega \))
Patching up Exterior Dirichlet

Problem: $N(I/2 + S') = \{\psi\} \ldots$ but we do not know ψ.

Use a different kernel:

$$\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?

Patching up Exterior Dirichlet Problem: \(N(I/2 + S') = \{ \psi \} \ldots \) but we do not know \(\psi \).

Use a different kernel:

\[
\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}
\]

Note: Singularity only at origin! (assumed \(\in \Omega \))

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
Patching up Exterior Dirichlet

Problem: $N(I/2 + S') = \{\psi\} \ldots$ but we do not know ψ.

Use a different kernel:

$$\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
Patching up Exterior Dirichlet

Problem: \(N(I/2 + S') = \{\psi\} \ldots \) but we do not know \(\psi \).

Use a different kernel:

\[
\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}
\]

Note: Singularity only at origin! (assumed \(\in \Omega \))

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce \(u = 0 \) on exterior.
Patching up Exterior Dirichlet

Problem: \(N(I/2 + S') = \{ \psi \} \ldots \) but we do not know \(\psi \).

Use a different kernel:

\[
\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}
\]

Note: Singularity only at origin! (assumed \(\in \Omega \))

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce \(u = 0 \) on exterior.
- \(|x|^{n-2} u(x) = ? \) on exterior
Patching up Exterior Dirichlet Problem: \(N(I/2 + S') = \{\psi\} \ldots \) but we do not know \(\psi \).

Use a different kernel:

\[
\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}
\]

Note: Singularity only at origin! (assumed \(\in \Omega \))

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce \(u = 0 \) on exterior.
- \(|x|^{n-2} u(x) = ? \) on exterior
- Thus \(\int \varphi = 0 \). Contribution of the second term?
Patching up Exterior Dirichlet Problem: $N(I/2 + S^{'}) = \{\psi\} \ldots$ but we do not know ψ.

Use a different kernel:

$$\hat{n} \cdot \nabla G(x, y) \rightarrow \hat{n} \cdot \nabla G(x, y) + \frac{1}{|x|^{n-2}}$$

Note: Singularity only at origin! (assumed $\in \Omega$)

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce $u = 0$ on exterior.
- $|x|^{n-2} u(x) = ?$ on exterior
- Thus $\int \varphi = 0$. Contribution of the second term?
- $\varphi/2 + D\varphi = 0$, i.e. $\varphi \in N(I/2 + D) = ?$
Patching up Exterior Dirichlet Problem: \(N(I/2 + S') = \{\psi\} \ldots \) but we do not know \(\psi \).

Use a different kernel:

\[
\hat{n} \cdot \nabla_y G(x, y) \quad \rightarrow \quad \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}
\]

Note: Singularity only at origin! (assumed \(\in \Omega \))

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce \(u = 0 \) on exterior.
- \(|x|^{n-2} u(x) = ? \) on exterior
- Thus \(\int \varphi = 0 \). Contribution of the second term?
- \(\varphi/2 + D\varphi = 0 \), i.e. \(\varphi \in N(I/2 + D) = ? \)
- Existence/uniqueness?
Patching up Exterior Dirichlet Problem: \(N(I/2 + S') = \{\psi\} \ldots \) but we do not know \(\psi \).

Use a different kernel:

\[
\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}
\]

Note: Singularity only at origin! (assumed \(\in \Omega \))

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce \(u = 0 \) on exterior.
- \(|x|^{n-2} u(x) = ? \) on exterior
- Thus \(\int \varphi = 0 \). Contribution of the second term?
- \(\varphi/2 + D\varphi = 0 \), i.e.
- Existence/uniqueness?

\[\rightarrow \text{Existence for 4 out of 4.} \]
Patching up Exterior Dirichlet Problem: \(N(I/2 + S') = \{\psi\} \ldots \) but we do not know \(\psi \).

Use a different kernel:

\[
\hat{n} \cdot \nabla_y G(x, y) \rightarrow \hat{n} \cdot \nabla_y G(x, y) + \frac{1}{|x|^{n-2}}
\]

Note: Singularity only at origin! (assumed \(\in \Omega \))

- 2D behavior? 3D behavior?
- Still a solution of the PDE?
- Compact?
- Jump condition? Exterior limit? Deduce \(u = 0 \) on exterior.
- \(|x|^{n-2} u(x) = ? \) on exterior
- Thus \(\int \varphi = 0 \). Consider \(\varphi/2 + D\varphi = 0 \), i.e.
- Existence/uniqueness?

\[\rightarrow \] Existence for 4 out of 4.

Remaining key shortcoming of IE theory for BVPs?