Admin bits

• Homework?
• Office hours?
• Books
• Video? Hope whiteboard is readable
Today

Integral Equations: what? (cont’d)

Integral equations: why?

Spaces

Operators
Outline

Integral Equations: what? (cont’d)

Integral equations: why?

Spaces

Operators
Solving a BVP with integral equations

Solve a (interior Laplace Dirichlet) BVP, \(\partial \Omega = \Gamma \)

\[
\triangle u = 0 \quad \text{in} \Omega, \quad u|_{\Gamma} = f|_{\Gamma}.
\]

1. Pick representation:

\[
 u(x) := (S\sigma)(x)
\]

2. Take (interior) limit onto \(\Gamma \):

\[
 u|_{\Gamma} = S\sigma
\]

3. Enforce BC:

\[
 u|_{\Gamma} = f
\]

4. Solve resulting linear system:

\[
 S\sigma = f
\]

5. Obtain PDE solution in \(\Omega \) by evaluating representation
What to do?

1. Pick representation:
 \[u(x) := (D\sigma)(x) \]

2. Take (interior) limit onto \(\Gamma \):
 \[u|_{\Gamma} = D\sigma - \sigma/2 \]

3. Enforce BC:
 \[u|_{\Gamma} = f \]

4. Solve resulting linear system:
 \[(D - \text{Id}/2)\sigma = f \]

5. Obtain PDE solution in \(\Omega \) by evaluating representation
What to do?

1. Pick representation:

\[u(x) := (D\sigma)(x) \]

2. Take (interior) limit onto \(\Gamma \):

\[u|_\Gamma = D\sigma - \sigma/2 \]

3. Enforce BC:

\[u|_\Gamma = f \]

4. Solve resulting linear system:

\[(D - \text{Id}/2)\sigma = f \]

5. Obtain PDE solution in \(\Omega \) by evaluating representation
Lies & Damned lies

A few nontrivial issues swept under the rug:

- **Theory**
 Does this even have a right to work?

- **Singular Quadrature**
 Must compute (3D)

\[S\sigma(x) = \int_{\Gamma} \frac{1}{|x - y|} \sigma(y) ds_y \]

at and near \(|x - y| = 0\) on \(\Gamma\)

- **Computational cost**
 - What is really going on?
 - What is the computational cost?
Lies & Damned lies

A few nontrivial issues swept under the rug:

- **Theory**
 Does this even have a right to work?

- **Singular Quadrature**
 Must compute (3D)

\[S\sigma(x) = \int_{\Gamma} \frac{1}{|x - y|}\sigma(y)ds_y \]

at and near \(|x - y| = 0\) on \(\Gamma\)

- **Computational cost**
 - What is really going on?
 - What is the computational cost?

We’ll revisit these issues, in order.
Integral Equations: what? (cont’d)

Integral equations: why?

Spaces

Operators
Disclaimer: Silver bullets?

No known method is a ‘silver bullet’
(that matches or beats all competitors in every setting)

Most important goals of this class:
• intuitive understanding of where integral equations are well-suited
• overview of machinery involved
Disclaimer: Silver bullets?

No known method is a ‘silver bullet’
(that matches or beats all competitors in every setting)

Most important goals of this class:
• intuitive understanding of where integral

With that in mind:
Let’s dig up some dirt on the competition :)
Recap: Condition number

Condition number

Amplification factor of relative error in solving $Ax = b$

Assume $\tilde{b} = b + \Delta b$ — actually solved: $A\tilde{x} = \tilde{b}$.

\[
\frac{\text{rel. err in } \tilde{x}}{\text{rel. err in } \tilde{b}} = \frac{\|A^{-1}\Delta b\|/\|A^{-1}b\|}{\|\Delta b\|/\|b\|} = \frac{\|A^{-1}\Delta b\|}{\|\Delta b\|} \cdot \frac{\|b\|}{\|A^{-1}b\|} = \frac{\|A^{-1}\Delta b\|}{\|\Delta b\|} \cdot \frac{\|A(A^{-1}b)\|}{\|A^{-1}b\|} \leq \|A^{-1}\| \|A\| =: \kappa(A)
\]
Recap: Condition number

Condition number

Amplification factor of relative error in solving $Ax = b$

Assume $\tilde{b} = b + \Delta b$ — actually solved: $A\tilde{x} = \tilde{b}$.

\[
\frac{\text{rel. err in } \tilde{x}}{\text{rel. err in } \tilde{b}} = \frac{\|A^{-1}\Delta b\|/\|A^{-1}b\|}{\|\Delta b\|/\|b\|} = \frac{\|A^{-1}\Delta b\|}{\|\Delta b\|} \cdot \frac{\|b\|}{\|A^{-1}b\|} = \frac{\|A^{-1}\Delta b\|}{\|\Delta b\|} \cdot \frac{\|A(A^{-1}b)\|}{\|A^{-1}b\|} \leq \|A^{-1}\| \|A\| =: \kappa(A)
\]

\[
\kappa(A) = \sigma_{\max}(A)/\sigma_{\min}(A)
\]
Recap: Catastrophic cancellation

Floating point numbers: \text{mantissa} \cdot 2^{\text{exponent}}

- 0.1101101101 (exponent: -2)
- 0.0000000000000001101101 (exponent: -8)
- 0.00001101101 (exponent: -4)
- 1.101101 (exponent: 0)

Impossible: Compute a very small number by subtracting very big numbers

What? Why? Spaces Operators
Recap: Catastrophic cancellation

Floating point numbers: \[\text{mantissa} \cdot 2^{\text{exponent}} \]

Impossible:
Compute a very small number by subtracting very big numbers
Finite difference accuracy

Single precision FD error on $\sin(20 \cdot 2\pi)$

And that's just applying the forward operator.

How about inverting it?
Finite difference accuracy

Single precision FD error on $\sin(20 \cdot 2\pi)$

And that’s just applying the forward operator.
How about inverting it?
Discretizing derivatives

Derivative operator: Conditioning?

\[\partial e^{\alpha x} = \alpha e^{\alpha x} \]

Unbounded, gets worse with better approximation

I.e. \[\| \partial \| \to \infty \]

Practically usually: \[\| \partial_h \| \sim \frac{1}{h} \]

\[\partial (\text{const}) = 0 \]

Zero eigenvalue \(\to\) not invertible

I.e. \[\| \partial^{-1} \| \ldots ? \]

Practically fixed (to some extent) by boundary conditions (but also unbounded below!)

In the limit \(h \to 0 \), the condition number does not exist.
Discretizing derivatives

Derivative operator: Conditioning?

\[\partial e^{\alpha x} = \alpha e^{\alpha x} \quad \text{Unbounded, gets worse with better approximation} \]

\[\partial (\text{const}) = 0 \]

Zero eigenvalue \(\Rightarrow\) not invertible

I.e. \(\|\partial\| \to \infty\)

I.e. \(\|\partial^{-1}\| \ldots ?\)

Practically usually: \(\|\partial_h\| \sim \frac{1}{h}\)

Practically fixed (to some extent) by boundary conditions (but also

In the limit \(h \to 0\), the

Problem in left column also addressed by multigrid.

But: not in this course :)

What? Why? Spaces Operators
“Morally correct” numerical schemes

A method is “morally correct” if it...

- can get machine precision
 - “What’s so special about 4/8/x digits?”
- has condition number $O(1)$ in problem size
 - i.e. “the method is scalable”
 - (≠ e.g. parallel scalability)
“Morally correct” numerical schemes

A method is “morally correct” if it…

- can get machine precision
 - “What’s so special about 4/8/x digits?”
- has condition number $O(1)$ in problem size
 - i.e. “the method is scalable”
 (≠ e.g. parallel scalability)

;)}
Summary

Why IEs?

• $O(n)$ solve complexity (or, at worst, $O(n \log n)$)
• DOFs only on boundary
• Conditioning
• Exterior problems
• Geometric flexibility
 • e.g. moving boundaries—no volume mesh to deal with
• ‘Data-driven’

But:

• More machinery to learn, code
 • Many more choices of machinery
 • “Lots of flexibility”
• Less mature than FD/FE
• Favors (piecewise) constant-coefficient elliptic
 • Other PDEs/BVPs possible, but require work
Outline

Integral Equations: what? (cont’d)

Integral equations: why?

Spaces

Operators
Disclaimer

Some of what follows is *slightly* sloppy.

Use a book or Wikipedia to get the full truth.
A *norm* $\| \cdot \|$ maps an element of a *vector space* into $[0, \infty)$. It satisfies:

- $\|x\| = 0 \iff x = 0$
- $\|\lambda x\| = |\lambda| \|x\|$
- $\|x + y\| \leq \|x\| + \|y\|$ (triangle inequality)
Norm

Definition (Norm)

A *norm* $\| \cdot \|$ maps an element of a *vector space* into $[0, \infty)$. It satisfies:

1. $\|x\| = 0 \iff x = 0$
2. $\|\lambda x\| = |\lambda| \|x\|$
3. $\|x + y\| \leq \|x\| + \|y\|$ (triangle inequality)

Can create norm from *inner product*: $\|x\| = \sqrt{\langle x, x \rangle}$
Definition (ℓ^p norms)

$$
\|x\|_{\ell^p} := \sqrt[p]{\sum_{i=1}^{n} |x_n|^p}
$$

Most important: $p = 1, 2, \infty$.
Finite-dimensional norms

Definition (\(\ell^p\) norms)

\[
\|x\|_{\ell^p} := \sqrt[p]{\sum_{i=1}^{n} |x_n|^p}
\]

Most important: \(p = 1, 2, \infty\).

All equivalent.
Finite-dimensional norms

Definition (ℓ^p norms)

$$\|x\|_{\ell^p} := \sqrt[p]{\sum_{i=1}^{n} |x_n|^p}$$

Most important: $p = 1, 2, \infty$.

All equivalent. (Definition?)
Definition \((\ell^p \text{ norms})\)

\[\| x \|_{\ell^p} := \sqrt[p]{\sum_{i=1}^{n} |x_i|^p} \]

Most important: \(p = 1, 2, \infty \).

All equivalent. (Definition?)

\[p = \infty! ? \]
Definition (Convergent sequence)

\[x_n \to x \iff \|x_n - x\| \to 0 \]
“convergence in norm”

Definition (Cauchy sequence)

For all \(\varepsilon > 0 \) there exists an \(n \) for which
\[\|x_\nu - x_\mu\| \leq \varepsilon \text{ for } \mu, \nu \geq n \]
(Convergence without known limit)

Definition (Complete/“Banach” space)

Cauchy \(\Rightarrow \) Convergent
Convergence

Definition (Convergent sequence)
\[x_n \to x :\iff \|x_n - x\| \to 0 \quad \text{“convergence in norm”} \]

Definition (Cauchy sequence)
For all \(\varepsilon > 0 \) there exists an \(n \) for which
\[\|x_\nu - x_\mu\| \leq \varepsilon \quad \text{for} \quad \mu, \nu \geq n \]
(Convergence without known limit)

Definition (Complete/“Banach” space)
Cauchy \(\Rightarrow \) Convergent

Complete space with inner product: \textit{Hilbert space}
Convergence

Definition (Convergent sequence)

\[x_n \to x \iff \|x_n - x\| \to 0 \]

“convergence in norm”

Definition (Cauchy sequence)

For all \(\varepsilon > 0 \) there exists an \(n \) for which

\[\|x_\nu - x_\mu\| \leq \varepsilon \text{ for } \mu, \nu \geq n \]

(Convergence without known limit)

Definition (Complete/“Banach” space)

Cauchy \(\Rightarrow \) Convergent

Complete space with inner product: **Hilbert space**

Counterexample?
Function spaces

<table>
<thead>
<tr>
<th>Space</th>
<th>Description</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C(\Omega)$</td>
<td>f continuous, $|f|\infty := \sup{x \in \Omega}</td>
<td>f(x)</td>
</tr>
<tr>
<td>$C^k(\Omega)$</td>
<td>f k-times continuously differentiable</td>
<td></td>
</tr>
<tr>
<td>$C^{0,\alpha}(\Omega)$</td>
<td>$|f|\alpha := |f|\infty + \sup_{x \neq y} \frac{</td>
<td>f(x) - f(y)</td>
</tr>
<tr>
<td>$C_L(\Omega)$</td>
<td>$</td>
<td>f(x) - (y)</td>
</tr>
<tr>
<td>$L^p(\Omega)$</td>
<td>$|f|_p := \sqrt[p]{\int_D</td>
<td>f(x)</td>
</tr>
</tbody>
</table>

$\Omega \subseteq \mathbb{R}^n$
Function spaces

<table>
<thead>
<tr>
<th>Space</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C(\Omega)$</td>
<td>f continuous, $|f|\infty := \sup{x \in \Omega}</td>
</tr>
<tr>
<td>$C^k(\Omega)$</td>
<td>f k-times continuously differentiable</td>
</tr>
<tr>
<td>$C^{0,\alpha}(\Omega)$</td>
<td>$|f|\alpha := |f|\infty + \sup_{x \neq y} \frac{</td>
</tr>
<tr>
<td>$C_L(\Omega)$</td>
<td>$</td>
</tr>
<tr>
<td>$L^p(\Omega)$</td>
<td>$|f|p := \sqrt[p]{\int{\Omega}</td>
</tr>
</tbody>
</table>

Many spaces exist in “local” flavors. Definition?
Function spaces

<table>
<thead>
<tr>
<th>Space</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C(\Omega)$</td>
<td>f continuous, $|f|\infty := \sup{x \in \Omega}</td>
</tr>
<tr>
<td>$C^k(\Omega)$</td>
<td>f k-times continuously differentiable</td>
</tr>
<tr>
<td>$C^{0,\alpha}(\Omega)$</td>
<td>$|f|\alpha := |f|\infty + \sup_{x \neq y} \frac{</td>
</tr>
<tr>
<td>$C_L(\Omega)$</td>
<td>$</td>
</tr>
<tr>
<td>$L^p(\Omega)$</td>
<td>$|f|_p := \sqrt[p]{\int_D</td>
</tr>
</tbody>
</table>

Many spaces exist in “local” flavors. Definition?

Again $p = 1, 2, \infty$ usually.
Outline

Integral Equations: what? (cont’d)

Integral equations: why?

Spaces

Operators
Linear operators

X, Y: Banach spaces

$A : X \rightarrow Y$ linear operator
Linear operators

X, Y: Banach spaces

$A : X \rightarrow Y$ linear operator

What does linear mean here?
Linear operators

X, Y: Banach spaces

$A : X \to Y$ linear operator
Linear operators

X, Y: Banach spaces

$A : X \rightarrow Y$ linear operator

Definition (Operator norm)

$\|A\| := \sup \{ \|Ax\|/\|x\| : 0 \neq x \in X \}$
Linear operators

X, Y: Banach spaces

$A : X \rightarrow Y$ linear operator

Definition (Operator norm)

$$
\|A\| := \sup\{\|Ax\|/\|x\| : 0 \neq x \in X\}
$$

Theorem

$$
\|A\| \text{ bounded } \iff A \text{ continuous}
$$
X, Y: Banach spaces

$A : X \rightarrow Y$ linear operator

Definition (Operator norm)

$\|A\| := \sup\{\|Ax\|/\|x\| : 0 \neq x \in X\}$

Theorem

$\|A\|$ bounded $\iff A$ continuous

Is there a notion of ‘continuous at x’ for linear operators?
Linear operators

X, Y: Banach spaces

$A : X \to Y$ linear operator

Definition (Operator norm)

$$\|A\| := \sup\{\|Ax\|/\|x\| : 0 \neq x \in X\}$$

Theorem

$\|A\| \text{ bounded } \iff A \text{ continuous}$

Is there a notion of ‘continuous at x’ for linear operators?

Come up with a convenient test for boundedness.