Integral Equations and Fast Algorithms Lecture 25: Singular quadrature, Intro Fast Algorithms

CS 598AK · November 19, 2013

Outline

Singular quadrature Special-purpose methods Quadrature by expansion QBX method design

Fast Algorithms

Outline

Singular quadrature Special-purpose methods

Quadrature by expansion QBX method design

Fast Algorithms

Theorem (A special integral [Kress LIE Lemma 8.21])

$$\frac{1}{2\pi} \int_0^{2\pi} \log\left(4\sin^2\frac{t}{2}\right) e^{imt} dt = \begin{cases} 0 & m = 0, \\ -\frac{1}{|m|} & m = \pm 1, \pm 2 \dots \end{cases}$$

Theorem (A special integral [Kress LIE Lemma 8.21])

$$\frac{1}{2\pi} \int_0^{2\pi} \log\left(4\sin^2\frac{t}{2}\right) e^{imt} dt = \begin{cases} 0 & m = 0, \\ -\frac{1}{|m|} & m = \pm 1, \pm 2 \dots \end{cases}$$

KM quadrature demo

KM quadrature demo

DOF choice for $\mathsf{KM}\ldots?$

KM quadrature demo

DOF choice for KM...?

Describe scheme

KM quadrature demo

DOF choice for KM...?

Describe scheme

Bigger idea hiding in KM...?

KM quadrature demo

DOF choice for KM...?

Describe scheme

Bigger idea hiding in KM...?

What if you knew how to integrate Laplace and wanted to do Helmholtz?

Singularity subtraction

$$\int \langle \text{Thing } X \text{ you would like to integrate} \rangle$$
$$= \int \langle \text{Thing } Y \text{ you } can \text{ integrate} \rangle$$
$$+ \int \langle \text{Difference } X - Y \text{ which is easy to integrate (numerically)} \rangle$$

Singularity subtraction

$$\int \langle \text{Thing } X \text{ you would like to integrate} \rangle$$
$$= \int \langle \text{Thing } Y \text{ you } can \text{ integrate} \rangle$$
$$+ \int \langle \text{Difference } X - Y \text{ which is easy to integrate (numerically)} \rangle$$

High-Order Corrected Trapezoidal Quadrature

Conditions for new nodes, weights
 (→ linear algebraic system, dep. on n)
 to integrate

 $\langle \mathsf{smooth} \rangle \cdot \langle \mathsf{singular} \rangle + \langle \mathsf{smooth} \rangle$

- Allowed singularities: $|x|^{\lambda}$ (for $|\lambda| < 1$), $\log |x|$
- Generic nodes and weights for log singularity
- Nodes and weights copy-and-pasteable from paper

[Kapur, Rokhlin '97]

High-Order Corrected Trapezoidal Quadrature

Conditions for new nodes, weights
 (→ linear algebraic system, dep. on n)
 to integrate

⟨sm

- Allowed singularitie
- Generic nodes and
- Nodes and weights

[Kapur, Rokhlin '97]

[Alpert '99] conceptually similar:

- Hybrid Gauss-Trapezoidal
- Positive weights
- Somewhat more accurate (empirically) than K-R
- Similar allowed singularities $(\lambda > -1)$
- Copy-paste weights

Generalized Gaussian

- "Gaussian" :
 - Integrates 2n functions exactly with n nodes
 - Positive weights
- Clarify assumptions on system of functions ("Chebyshev system") for which Gaussian quadratures exist
- When do (left/right) singular vectors of integral operators give rise to Chebyshev systems?
 - In many practical cases!
- Find nodes/weights by Newton's method
 - With special starting point
- Very accurate
- Nodes and weights for download

[Yarvin/Rokhlin '98]

Generalized Gaussian

- "Gaussian" :
 - Integrates 2n functions exactly with n nodes
 - Positive weights
- Clarify assumptions on system of functions ("Chebyshev system") for which Gaussian quadratures exist
- When do (left/right) singular vectors of integral operators give rise to Chebyshev systems?
 - In many practical cases!
- Find nodes/weights by Newton's method
 - With special starting point
- Very accurate
- Nodes and weights for download

[Yarvin/Rokhlin '98]

Generalizes to nD...

Generalized Gaussian

- "Gaussian" :
 - Integrates 2n functions exactly with n nodes
 - Positive weights
- Clarify assumptions on system of functions ("Chebyshev system") for which Gaussian quadratures exist
- When do (left/right) singular vectors of integral operators give rise to Chebyshev systems?
 - In many practical cases!
- Find nodes/weights by Newton's method
 - With special starting point
- Very accurate
- Nodes and weights

[Yarvin/Rokhlin '98]

Generalizes to nD...

... if you know how to make Newton's method converge

Singularity cancellation: Polar coordinate transform

$$\iint_{\partial\Omega} K(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}) ds_{\mathbf{y}} = \int_{0}^{R} \int_{\mathbf{x}+\mathbf{r} \in \partial\Omega \cap \partial B(\mathbf{x}, r)} K(\mathbf{x}, \mathbf{x}+\mathbf{r}) \varphi(\mathbf{x}+\mathbf{r}) d\langle \text{angles} \rangle r dr = \int_{0}^{R} \int_{\mathbf{x}+\mathbf{r} \in \partial\Omega \cap \partial B(\mathbf{x}, r)} \frac{K_{\text{less singular}}(\mathbf{x}, \mathbf{x}+\mathbf{r})}{r} \varphi(\mathbf{x}+\mathbf{r}) d\langle \text{angles} \rangle r dr$$

where $K_{\text{less singular}} = K \cdot r$

Singularity cancellation: Polar coordinate transform

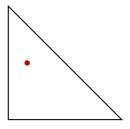
$$\iint_{\partial\Omega} K(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}) ds_{\mathbf{y}} =$$

$$\int_{0}^{R} \int_{\mathbf{x}+\mathbf{r} \in \partial\Omega \cap \partial B(\mathbf{x}, r)} K(\mathbf{x}, \mathbf{x}+\mathbf{r}) \varphi(\mathbf{x}+\mathbf{r}) d\langle \text{angles} \rangle r dr$$

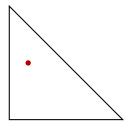
$$=$$

$$\int_{0}^{R} \int_{\mathbf{x}+\mathbf{r} \in \partial\Omega \cap \partial B(\mathbf{x}, r)} \frac{K_{\text{less singular}}(\mathbf{x}, \mathbf{x}+\mathbf{r})}{r} \varphi(\mathbf{x}+\mathbf{r}) d\langle \text{angles} \rangle r dr$$

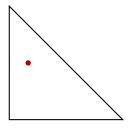
where $K_{\text{less singular}} = K \cdot r$



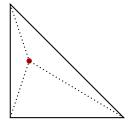
Problem: Singularity can sit anywhere in triangle



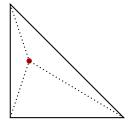
Problem: Singularity can sit *anywhere* in triangle \rightarrow need *lots* of quadrature rules (one per target)



Problem: Singularity can sit *anywhere* in triangle \rightarrow need *lots* of quadrature rules (one per target)!?



Problem: Singularity can sit *anywhere* in triangle \rightarrow need *lots* of quadrature rules (one per target) ... !?



Problem: Singularity can sit *anywhere* in triangle \rightarrow need *lots* of quadrature rules (one per target)!?

Kernel Regularization

Singularity makes integration troublesome: Get rid of it!

. . .

$$\overline{\sqrt{(x-y)^2}} \rightarrow \overline{\sqrt{(x-y)^2+\varepsilon^2}}$$

. . .

Use Richardson extrapolation to recover limit as $\varepsilon \rightarrow 0$.

(May also use geometric motivation: limit along line towards singular point.)

Primary drawbacks:

- Low-order accurate
- Need to make ε smaller (i.e. kernel more singular) to get better accuracy

Kernel Regularization

Singularity makes integration troublesome: Get rid of it!

. . .

$$\overline{\sqrt{(x-y)^2}} \rightarrow \overline{\sqrt{(x-y)^2 + \varepsilon^2}}$$

Use Richardson extrapolation to recover limit as $\varepsilon \rightarrow 0$.

(May also use geometric motivation: limit along line towards singular point.)

Primary drawbacks:

- Low-order accurate
- Need to make ε sr better accuracy

Can take many forms-for example:

. . .

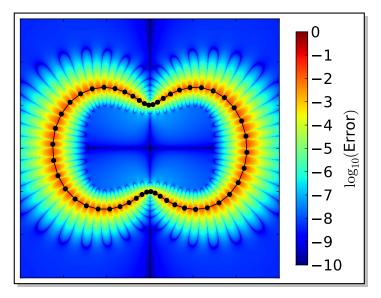
- Convolve integrand to smooth it $(\rightarrow$ remove/weaken singularity)
- Extrapolate towards no smoothing Related: [Beale/Lai '01]

Outline

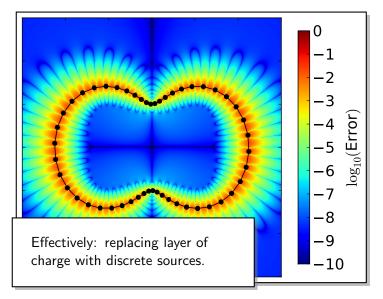
Singular quadrature Special-purpose methods Quadrature by expansion QBX method design

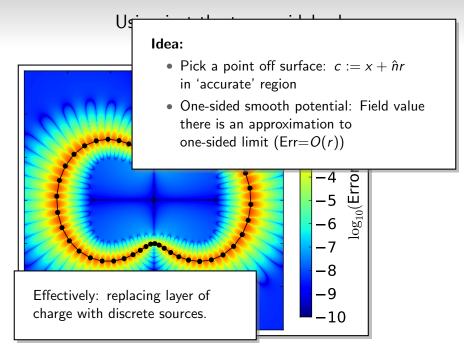
Fast Algorithms

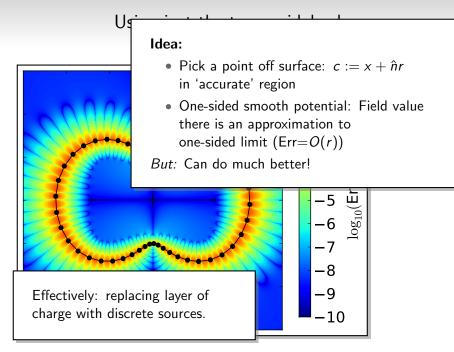
Using just the trapezoidal rule

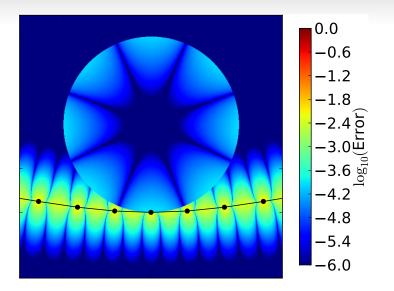


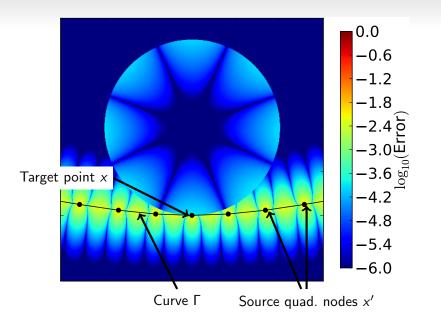
Using just the trapezoidal rule

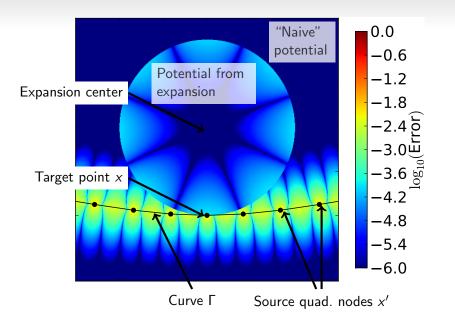


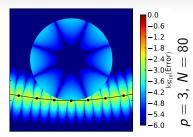


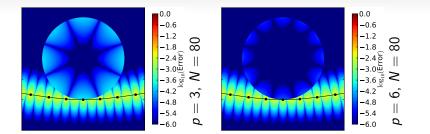


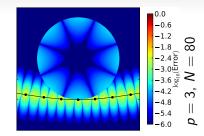


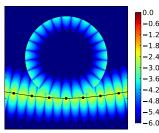




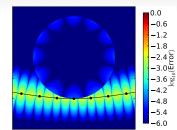








$$p = 12, N = 80$$



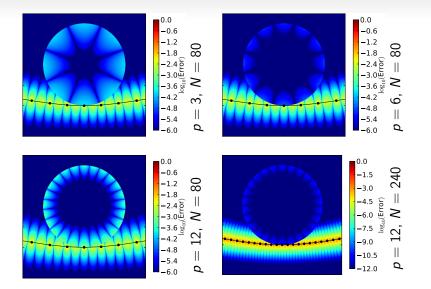
80

 $\|$

6, N

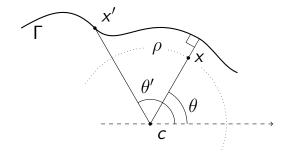
 $\|$

Δ

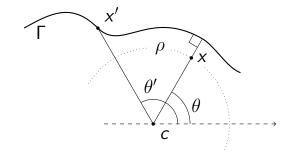


QBX in formulas: Notation, Basics

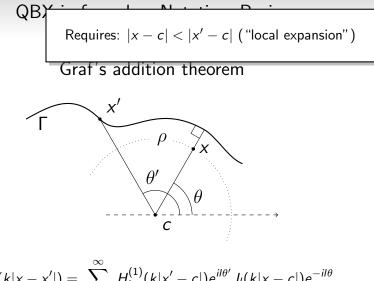
Graf's addition theorem



QBX in formulas: Notation, Basics



$$H_0^{(1)}(k|x-x'|) = \sum_{l=-\infty}^{\infty} H_l^{(1)}(k|x'-c|)e^{il heta'}J_l(k|x-c|)e^{-il heta}$$



$$H_0^{(1)}(k|x-x'|) = \sum_{l=-\infty} H_l^{(1)}(k|x'-c|)e^{il heta'}J_l(k|x-c|)e^{-il heta}$$

QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-\infty}^{\infty} \alpha_l J_l(k\rho) e^{-il heta}$$

with

$$\alpha_{I} = \frac{i}{4} \int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \quad (I = -\infty, \dots, \infty)$$

 $S\sigma$ is a smooth function *up to* Γ .

QBX in formulas: Formulation, dig

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-\infty}^{\infty} \alpha_l J_l(k\rho) e^{-il heta}$$

with

$$\alpha_{I} = \frac{i}{4} \int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \quad (I = -\infty, \dots, \infty)$$

 $S\sigma$ is a smooth function *up to* Γ .

QBX in formulas: Formulation, dis

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-p}^{p} \alpha_l J_l(k\rho) e^{-il\theta}$$

with

$$\alpha_{I} = \frac{i}{4} \int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \quad (I = -\infty, \dots, \infty)$$

 $S\sigma$ is a smooth function *up to* Γ .

QBX in formulas: Formulation, dis

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-p}^{p} \alpha_l J_l(k\rho) e^{-il\theta}$$

with

$$\alpha_{I} = \frac{i}{4} T_{N} \left(\int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \right) \quad (I = -\infty, \dots, \infty)$$

 $S\sigma$ is a smooth function *up to* Γ .

QBX in formulas: Formulation, dig

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-p}^{p} \alpha_l J_l(k\rho) e^{-il\theta}$$

with

$$\alpha_{I} = \frac{i}{4} T_{N} \left(\int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \right) \quad (I = -\infty, \dots, \infty)$$

 $S\sigma$ is a smooth function *up to* Γ .

Two limits $(p, N \rightarrow \infty)$! Experiment showed: order matters!

QBX in formulas: Formulation, dis

Now discretize.

Compute layer potential on the disk as

$$S_k\sigma(x) = \sum_{l=-p}^{p} \alpha_l J_l(k\rho) e^{-il\theta}$$

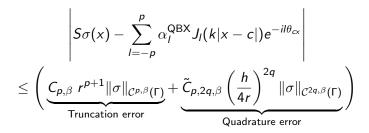
with

$$\alpha_{I} = \frac{i}{4} T_{N} \left(\int_{\Gamma} H_{I}^{(1)}(k|x'-c|) e^{il\theta'} \sigma(x') dx' \right) \quad (I = -\infty, \dots, \infty)$$

 $S\sigma$ is a smooth function up to Γ

Two limits $(p, N \rightarrow \infty)$! Experiment showed: order matters! And: failure and repair not actually surprising.

Error result



Proof sketch:

- 1. First, assume exact calculation of coefficients
- 2. Estimate tail of expansion
- 3. Estimate quadrature error in coefficients (derivatives/...)
- 4. Sum quadrature errors in truncated expansion

[K, Barnett, Greengard, O'Neil '12 (submitted)]

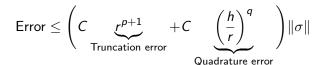
Outline

Singular quadrature

Special-purpose methods Quadrature by expansion QBX method design

Fast Algorithms

Achieving high order

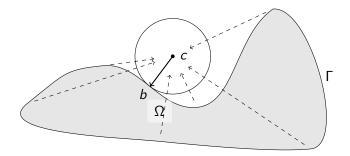


Two approaches:

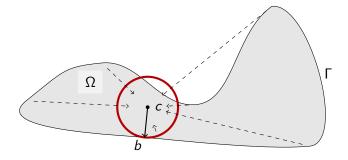
- Asymptotically convergent: $r = \sqrt{h}$
 - $\bigoplus \text{ Error } \rightarrow 0 \text{ as } h \rightarrow 0$
 - Solution Low order: $h^{(p+1)/2}$
- Convergent with controlled precision: r = 5h
 - each arr transformation for the hyperbolic transformation of transformation
 - \bigcirc High order: h^{p+1}

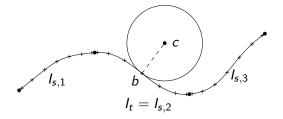
to controlled precision $\varepsilon := (1/5)^q$

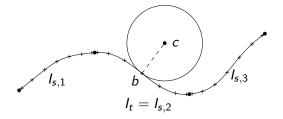
"Global" QBX: Dealing with geometry



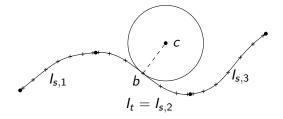
"Global" QBX, part II





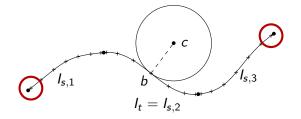


Makes geometry processing much simpler



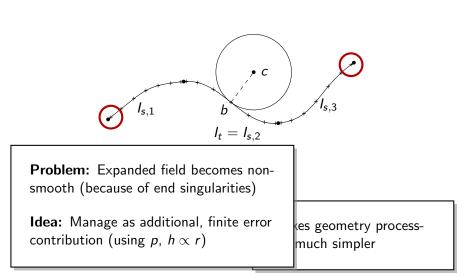
Problem: Expanded field becomes non-smooth (because of end singularities)

kes geometry processmuch simpler



Problem: Expanded field becomes non-smooth (because of end singularities)

kes geometry processmuch simpler



Other layer potentials

Can't just do single-layer potentials:

$$\alpha_l^D = \frac{i}{4} \int_{\Gamma} \frac{\partial}{\partial \hat{n}_{x'}} H_l^{(1)}(k|x'-c|) e^{il\theta'} \mu(x') \, dx'.$$

Even easier for target derivatives (S' et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Other layer potentials

Can't just do single-layer potentials:

$$\alpha_l^D = \frac{i}{4} \int_{\Gamma} \frac{\partial}{\partial \hat{n}_{x'}} H_l^{(1)}(k|x'-c|) e^{il\theta'} \mu(x') \, dx'.$$

Even easier for target derivatives (S' et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known-e.g.

$$(PV)D^*\mu(x)|_{\Gamma} = \lim_{x^{\pm} \to x} D\mu(x^{\pm}) \mp \frac{1}{2}\mu(x).$$

Other layer potentials

Can't just do single-layer potentials:

$$\alpha_l^D = \frac{i}{4} \int_{\Gamma} \frac{\partial}{\partial \hat{n}_{x'}} H_l^{(1)}(k|x'-c|) e^{il\theta'} \mu(x') \, dx'.$$

Even easier for target derivatives (S' et al.):

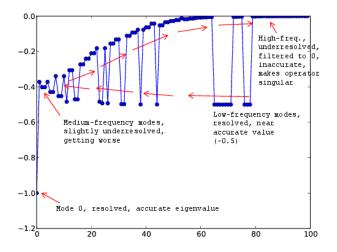
Take derivative of local expansion.

Analysis says: Will lose an order.

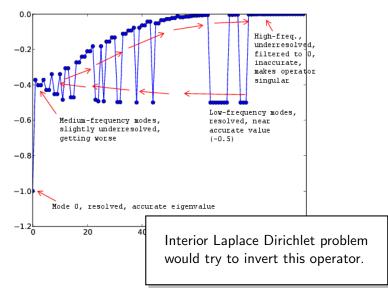
Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known-e.g.

Spectral behavior



Spectral behavior



Spectral behavior, part II

QBX wants to approximate a compact operator-let it:

$$D\mu(x) = \frac{1}{2} \left(\lim_{x^+ \to x} D\mu(x^+) + \lim_{x^- \to x} D\mu(x^-) \right).$$

Simply use two QBX applications.

• Predictably benign spectral behavior at high frequencies.

Important for iterative solvers (e.g. GMRES)

Not many competing schemes have that!

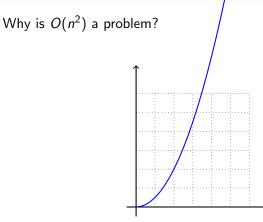
Outline

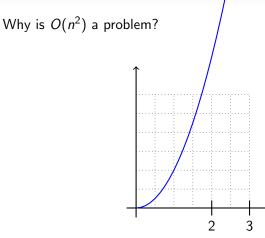
Singular quadrature

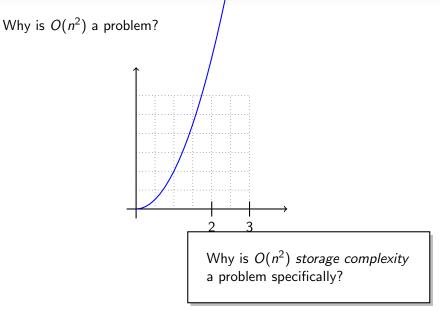
Fast Algorithms

Integral equations + computers

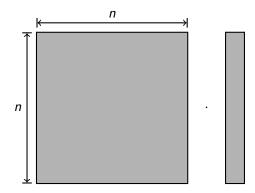
Why is $O(n^2)$ a problem?







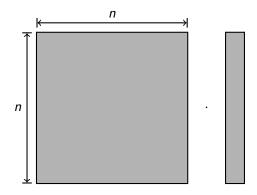
Integral equations: computational expense $O(n^2)$ not in principle incorrect: Natural complexity of a dense mat-vec.



Or, to be more precise:

 $O(\langle \# \mathsf{sources} \rangle \cdot \langle \# \mathsf{targets} \rangle)$

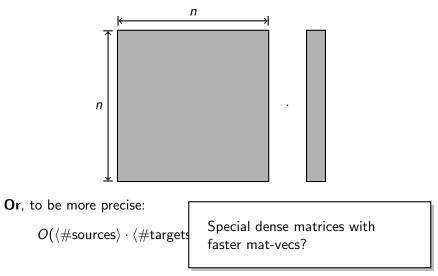
Integral equations: computational expense $O(n^2)$ not in principle incorrect: Natural complexity of a dense mat-vec.



Or, to be more precise:

 $O(\langle \# \mathsf{sources} \rangle \cdot \langle \# \mathsf{targets} \rangle) = O(\langle \# \mathsf{rows} \rangle \cdot \langle \# \mathsf{columns} \rangle)$

Integral equations: computational expense $O(n^2)$ not in principle incorrect: Natural complexity of a dense mat-vec.



If $A = uv^T$, then

$$Ax = \underbrace{\left(uv^{T}\right)}_{O(n^{2})} x$$

If $A = uv^T$, then

$$Ax = \underbrace{(uv^{T})}_{O(n^{2})} x = u\underbrace{(v^{T}x)}_{O(n)}$$

If $A = uv^T$, then

$$Ax = \underbrace{(uv^{T})}_{O(n^{2})} x = u\underbrace{(v^{T}x)}_{O(n)}$$

If
$$A = u_1 v_1^T + u_2 v_2^T + \dots + u_k v_k^T$$
, then
 $A = ?$

If $A = uv^T$, then

$$Ax = \underbrace{(uv^{T})}_{O(n^{2})} x = u\underbrace{(v^{T}x)}_{O(n)}$$

If
$$A = u_1 v_1^T + u_2 v_2^T + \cdot + u_k v_k^T$$
, then
 $A = ?$

Computational cost?

If $A = uv^T$, then

$$Ax = \underbrace{(uv^{T})}_{O(n^{2})} x = u\underbrace{(v^{T}x)}_{O(n)}$$

If
$$A = u_1 v_1^T + u_2 v_2^T + \cdot + u_k v_k^T$$
, then

A =? Computational cost? Relation to 1D fast algorithm (HW 4)?

If $A = uv^T$, then

$$Ax = \underbrace{(uv^{T})}_{O(n^{2})} x = u\underbrace{(v^{T}x)}_{O(n)}$$

If
$$A = u_1 v_1^T + u_2 v_2^T + \cdot + u_k v_k$$

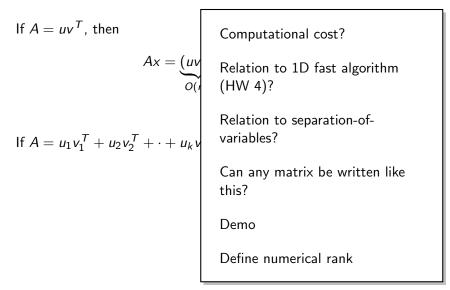
Computational cost?

Relation to 1D fast algorithm (HW 4)?

Relation to separation-of-variables?

If $A = uv^T$, then $Ax = \underbrace{(uv^{T})}_{x = u} \underbrace{(v^{T}x)}_{x = u}$ Computational cost? If $A = u_1 v_1^T + u_2 v_2^T + \cdots + u_k v_k$ Relation to 1D fast algorithm (HW 4)? Relation to separation-ofvariables? Can any matrix be written like this?

If $A = uv^T$, then	
$Ax = \underbrace{(uv)}_{OV}$	Computational cost?
	Relation to 1D fast algorithm (HW 4)?
If $A = u_1 v_1^T + u_2 v_2^T + \dots + u_k v_k$	Relation to separation-of- variables?
	Can any matrix be written like this?
	Demo



Questions?

?