
Integral Equations and Fast Algorithms
Lecture 25: Singular quadrature,

Intro Fast Algorithms

CS 598AK · November 19, 2013

Singular quadrature Fast Algorithms

Outline

Singular quadrature
Special-purpose methods
Quadrature by expansion
QBX method design

Fast Algorithms

Singular quadrature Fast Algorithms

Outline

Singular quadrature
Special-purpose methods
Quadrature by expansion
QBX method design

Fast Algorithms

Singular quadrature Fast Algorithms

Kussmaul/Martensen (aka “Kress”)

Theorem (A special integral [Kress LIE Lemma 8.21])

1

2π

ˆ 2π

0
log
(

4 sin2 t

2

)
e imtdt =

{
0 m = 0,

− 1
|m| m = ±1,±2

Exciting?

Singular quadrature Fast Algorithms

Kussmaul/Martensen (aka “Kress”)

Theorem (A special integral [Kress LIE Lemma 8.21])

1

2π

ˆ 2π

0
log
(

4 sin2 t

2

)
e imtdt =

{
0 m = 0,

− 1
|m| m = ±1,±2

Exciting?

Singular quadrature Fast Algorithms

Kussmaul/Martensen (aka “Kress”)

KM quadrature demo

DOF choice for KM. . . ?

Singular quadrature Fast Algorithms

Kussmaul/Martensen (aka “Kress”)

KM quadrature demo

DOF choice for KM. . . ?

Singular quadrature Fast Algorithms

Kussmaul/Martensen (aka “Kress”)

KM quadrature demo

DOF choice for KM. . . ?

Describe scheme

Singular quadrature Fast Algorithms

Kussmaul/Martensen (aka “Kress”)

KM quadrature demo

DOF choice for KM. . . ?

Describe scheme

Bigger idea hiding in KM. . . ?

Singular quadrature Fast Algorithms

Kussmaul/Martensen (aka “Kress”)

KM quadrature demo
DOF choice for KM. . . ?

Describe scheme

Bigger idea hiding in KM. . . ?

What if you knew how to integrate
Laplace and wanted to do Helmholtz?

Singular quadrature Fast Algorithms

Singularity subtraction

ˆ
〈Thing X you would like to integrate〉

=

ˆ
〈Thing Y you can integrate〉

+

ˆ
〈Difference X − Y which is easy to integrate (numerically)〉

Drawback?

Singular quadrature Fast Algorithms

Singularity subtraction

ˆ
〈Thing X you would like to integrate〉

=

ˆ
〈Thing Y you can integrate〉

+

ˆ
〈Difference X − Y which is easy to integrate (numerically)〉

Drawback?

Singular quadrature Fast Algorithms

High-Order Corrected Trapezoidal Quadrature

• Conditions for new nodes, weights
(→ linear algebraic system, dep. on n)
to integrate

〈smooth〉 · 〈singular〉+ 〈smooth〉

• Allowed singularities: |x |λ (for |λ| < 1), log |x |
• Generic nodes and weights for log singularity

• Nodes and weights copy-and-pasteable from paper

[Kapur, Rokhlin ‘97]

[Alpert ‘99] conceptually similar:

• Hybrid Gauss-Trapezoidal

• Positive weights

• Somewhat more accurate
(empirically) than K-R

• Similar allowed singularities
(λ > −1)

• Copy-paste weights

Singular quadrature Fast Algorithms

High-Order Corrected Trapezoidal Quadrature

• Conditions for new nodes, weights
(→ linear algebraic system, dep. on n)
to integrate

〈smooth〉 · 〈singular〉+ 〈smooth〉

• Allowed singularities: |x |λ (for |λ| < 1), log |x |
• Generic nodes and weights for log singularity

• Nodes and weights copy-and-pasteable from paper

[Kapur, Rokhlin ‘97]

[Alpert ‘99] conceptually similar:

• Hybrid Gauss-Trapezoidal

• Positive weights

• Somewhat more accurate
(empirically) than K-R

• Similar allowed singularities
(λ > −1)

• Copy-paste weights

Singular quadrature Fast Algorithms

Generalized Gaussian

• “Gaussian”:
• Integrates 2n functions exactly with n nodes
• Positive weights

• Clarify assumptions on system of functions (“Chebyshev
system”) for which Gaussian quadratures exist

• When do (left/right) singular vectors of integral operators
give rise to Chebyshev systems?

• In many practical cases!

• Find nodes/weights by Newton’s method
• With special starting point

• Very accurate

• Nodes and weights for download

[Yarvin/Rokhlin ‘98]

Generalizes to nD. . .

Singular quadrature Fast Algorithms

Generalized Gaussian

• “Gaussian”:
• Integrates 2n functions exactly with n nodes
• Positive weights

• Clarify assumptions on system of functions (“Chebyshev
system”) for which Gaussian quadratures exist

• When do (left/right) singular vectors of integral operators
give rise to Chebyshev systems?

• In many practical cases!

• Find nodes/weights by Newton’s method
• With special starting point

• Very accurate

• Nodes and weights for download

[Yarvin/Rokhlin ‘98] Generalizes to nD. . .

Singular quadrature Fast Algorithms

Generalized Gaussian

• “Gaussian”:
• Integrates 2n functions exactly with n nodes
• Positive weights

• Clarify assumptions on system of functions (“Chebyshev
system”) for which Gaussian quadratures exist

• When do (left/right) singular vectors of integral operators
give rise to Chebyshev systems?

• In many practical cases!

• Find nodes/weights by Newton’s method
• With special starting point

• Very accurate

• Nodes and weights for download

[Yarvin/Rokhlin ‘98]

Generalizes to nD. . .

. . . if you know how to make Newton’s
method converge

Singular quadrature Fast Algorithms

Singularity cancellation: Polar coordinate transform

¨
∂Ω

K (x, y)ϕ(y)dsy

=ˆ R

0

ˆ
x+r∈∂Ω∩∂B(x,r)

K (x, x + r)ϕ(x + r)d〈angles〉 r dr

=ˆ R

0

ˆ
x+r∈∂Ω∩∂B(x,r)

Kless singular(x, x + r)

r
ϕ(x + r)d〈angles〉 r dr

where Kless singular = K · r

Singular quadrature Fast Algorithms

Singularity cancellation: Polar coordinate transform

¨
∂Ω

K (x, y)ϕ(y)dsy

=ˆ R

0

ˆ
x+r∈∂Ω∩∂B(x,r)

K (x, x + r)ϕ(x + r)d〈angles〉 r dr

=ˆ R

0

ˆ
x+r∈∂Ω∩∂B(x,r)

Kless singular(x, x + r)

r
ϕ(x + r)d〈angles〉 r dr

where Kless singular = K · r

Singular quadrature Fast Algorithms

Quadrature on triangles

Problem: Singularity can sit anywhere in triangle

→ need lots of quadrature rules (one per target) . . . !?

Possible issue?

Singular quadrature Fast Algorithms

Quadrature on triangles

Problem: Singularity can sit anywhere in triangle
→ need lots of quadrature rules (one per target)

. . . !?

Possible issue?

Singular quadrature Fast Algorithms

Quadrature on triangles

Problem: Singularity can sit anywhere in triangle
→ need lots of quadrature rules (one per target) . . . !?

Possible issue?

Singular quadrature Fast Algorithms

Quadrature on triangles

Problem: Singularity can sit anywhere in triangle
→ need lots of quadrature rules (one per target) . . . !?

Possible issue?

Singular quadrature Fast Algorithms

Quadrature on triangles

Problem: Singularity can sit anywhere in triangle
→ need lots of quadrature rules (one per target) . . . !?

Possible issue?

Singular quadrature Fast Algorithms

Kernel Regularization

Singularity makes integration troublesome: Get rid of it!

· · ·√
(x − y)2

→ · · ·√
(x − y)2 + ε2

Use Richardson extrapolation to recover limit as ε→ 0.

(May also use geometric motivation: limit along line towards
singular point.)

Primary drawbacks:

• Low-order accurate

• Need to make ε smaller (i.e. kernel more singular) to get
better accuracy

Can take many forms–for example:

• Convolve integrand to smooth it
(→ remove/weaken singularity)

• Extrapolate towards no smoothing

Related: [Beale/Lai ‘01]

Singular quadrature Fast Algorithms

Kernel Regularization

Singularity makes integration troublesome: Get rid of it!

· · ·√
(x − y)2

→ · · ·√
(x − y)2 + ε2

Use Richardson extrapolation to recover limit as ε→ 0.

(May also use geometric motivation: limit along line towards
singular point.)

Primary drawbacks:

• Low-order accurate

• Need to make ε smaller (i.e. kernel more singular) to get
better accuracy

Can take many forms–for example:

• Convolve integrand to smooth it
(→ remove/weaken singularity)

• Extrapolate towards no smoothing

Related: [Beale/Lai ‘01]

Singular quadrature Fast Algorithms

Outline

Singular quadrature
Special-purpose methods
Quadrature by expansion
QBX method design

Fast Algorithms

Singular quadrature Fast Algorithms

Using just the trapezoidal rule

10

9

8

7

6

5

4

3

2

1

0

lo
g 1

0(
E
rr

o
r)

Effectively: replacing layer of
charge with discrete sources.

Idea:

• Pick a point off surface: c := x + n̂r
in ‘accurate’ region

• One-sided smooth potential: Field value
there is an approximation to
one-sided limit (Err=O(r))

Singular quadrature Fast Algorithms

Using just the trapezoidal rule

10

9

8

7

6

5

4

3

2

1

0

lo
g 1

0(
E
rr

o
r)

Effectively: replacing layer of
charge with discrete sources.

Idea:

• Pick a point off surface: c := x + n̂r
in ‘accurate’ region

• One-sided smooth potential: Field value
there is an approximation to
one-sided limit (Err=O(r))

Singular quadrature Fast Algorithms

Using just the trapezoidal rule

10

9

8

7

6

5

4

3

2

1

0

lo
g 1

0(
E
rr

o
r)

Effectively: replacing layer of
charge with discrete sources.

Idea:

• Pick a point off surface: c := x + n̂r
in ‘accurate’ region

• One-sided smooth potential: Field value
there is an approximation to
one-sided limit (Err=O(r))

Singular quadrature Fast Algorithms

Using just the trapezoidal rule

10

9

8

7

6

5

4

3

2

1

0

lo
g 1

0(
E
rr

o
r)

Effectively: replacing layer of
charge with discrete sources.

Idea:

• Pick a point off surface: c := x + n̂r
in ‘accurate’ region

• One-sided smooth potential: Field value
there is an approximation to
one-sided limit (Err=O(r))

But: Can do much better!

Singular quadrature Fast Algorithms

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

Curve Γ Source quad. nodes x ′

Target point x

Expansion center

Potential from
expansion

“Naive”
potential

Singular quadrature Fast Algorithms

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

Curve Γ Source quad. nodes x ′

Target point x

Expansion center

Potential from
expansion

“Naive”
potential

Singular quadrature Fast Algorithms

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

Curve Γ Source quad. nodes x ′

Target point x

Expansion center

Potential from
expansion

“Naive”
potential

Singular quadrature Fast Algorithms

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

p
=

3,
N

=
80

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g

10
(E

rr
o
r)

p
=

6,
N

=
80

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g

10
(E

rr
o
r)

p
=

12
,
N

=
80

12.0

10.5

9.0

7.5

6.0

4.5

3.0

1.5

0.0

lo
g

10
(E

rr
o
r)

p
=

12
,
N

=
24

0

Singular quadrature Fast Algorithms

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

p
=

3,
N

=
80

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

p
=

6,
N

=
80

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g

10
(E

rr
o
r)

p
=

12
,
N

=
80

12.0

10.5

9.0

7.5

6.0

4.5

3.0

1.5

0.0

lo
g

10
(E

rr
o
r)

p
=

12
,
N

=
24

0

Singular quadrature Fast Algorithms

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

p
=

3,
N

=
80

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

p
=

6,
N

=
80

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g

10
(E

rr
o
r)

p
=

12
,
N

=
80

12.0

10.5

9.0

7.5

6.0

4.5

3.0

1.5

0.0

lo
g

10
(E

rr
o
r)

p
=

12
,
N

=
24

0

Singular quadrature Fast Algorithms

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

p
=

3,
N

=
80

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g 1

0(
E
rr

o
r)

p
=

6,
N

=
80

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g

10
(E

rr
o
r)

p
=

12
,
N

=
80

12.0

10.5

9.0

7.5

6.0

4.5

3.0

1.5

0.0

lo
g 1

0(
E
rr

o
r)

p
=

12
,
N

=
24

0

Singular quadrature Fast Algorithms

QBX in formulas: Notation, Basics

Graf’s addition theorem

Γ
ρ

c

x ′

x

θ′

θ

H
(1)
0 (k |x − x ′|) =

∞∑
l=−∞

H
(1)
l (k|x ′ − c |)e ilθ′Jl(k |x − c |)e−ilθ

Requires: |x − c | < |x ′ − c | (“local expansion”)

Singular quadrature Fast Algorithms

QBX in formulas: Notation, Basics

Graf’s addition theorem

Γ
ρ

c

x ′

x

θ′

θ

H
(1)
0 (k |x − x ′|) =

∞∑
l=−∞

H
(1)
l (k|x ′ − c |)e ilθ′Jl(k |x − c |)e−ilθ

Requires: |x − c | < |x ′ − c | (“local expansion”)

Singular quadrature Fast Algorithms

QBX in formulas: Notation, Basics

Graf’s addition theorem

Γ
ρ

c

x ′

x

θ′

θ

H
(1)
0 (k |x − x ′|) =

∞∑
l=−∞

H
(1)
l (k|x ′ − c |)e ilθ′Jl(k |x − c |)e−ilθ

Requires: |x − c | < |x ′ − c | (“local expansion”)

Singular quadrature Fast Algorithms

QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =
∞∑

l=−∞
αlJl(kρ)e−ilθ

with

αl =
i

4

ˆ
Γ
H

(1)
l (k|x ′ − c |)e ilθ′σ(x ′) dx ′ (l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!

Singular quadrature Fast Algorithms

QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =
∞∑

l=−∞
αlJl(kρ)e−ilθ

with

αl =
i

4

ˆ
Γ
H

(1)
l (k|x ′ − c |)e ilθ′σ(x ′) dx ′ (l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!

Singular quadrature Fast Algorithms

QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =

p∑
l=−p

αlJl(kρ)e−ilθ

with

αl =
i

4

ˆ
Γ
H

(1)
l (k|x ′ − c |)e ilθ′σ(x ′) dx ′ (l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!

Singular quadrature Fast Algorithms

QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =

p∑
l=−p

αlJl(kρ)e−ilθ

with

αl =
i

4
TN

(ˆ
Γ
H

(1)
l (k |x ′ − c |)e ilθ′σ(x ′) dx ′

)
(l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!

Singular quadrature Fast Algorithms

QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =

p∑
l=−p

αlJl(kρ)e−ilθ

with

αl =
i

4
TN

(ˆ
Γ
H

(1)
l (k |x ′ − c |)e ilθ′σ(x ′) dx ′

)
(l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!

Singular quadrature Fast Algorithms

QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =

p∑
l=−p

αlJl(kρ)e−ilθ

with

αl =
i

4
TN

(ˆ
Γ
H

(1)
l (k |x ′ − c |)e ilθ′σ(x ′) dx ′

)
(l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!

And: failure and repair not actually surprising.

Singular quadrature Fast Algorithms

Error result

∣∣∣∣∣∣Sσ(x)−
p∑

l=−p
αQBX
l Jl(k |x − c |)e−ilθcx

∣∣∣∣∣∣
≤

(
Cp,β rp+1‖σ‖Cp,β(Γ)︸ ︷︷ ︸

Truncation error

+ C̃p,2q,β

(
h

4r

)2q

‖σ‖C2q,β(Γ)︸ ︷︷ ︸
Quadrature error

)

Proof sketch:

1. First, assume exact calculation of coefficients

2. Estimate tail of expansion

3. Estimate quadrature error in coefficients (derivatives/. . .)

4. Sum quadrature errors in truncated expansion

[K, Barnett, Greengard, O’Neil ‘12 (submitted)]

Singular quadrature Fast Algorithms

Outline

Singular quadrature
Special-purpose methods
Quadrature by expansion
QBX method design

Fast Algorithms

Singular quadrature Fast Algorithms

Achieving high order

Error ≤

(
C rp+1︸︷︷︸

Truncation error

+C

(
h

r

)q

︸ ︷︷ ︸
Quadrature error

)
‖σ‖

Two approaches:

• Asymptotically convergent: r =
√
h

+ Error → 0 as h→ 0
- Low order: h(p+1)/2

• Convergent with controlled precision: r = 5h
- Error 6→ 0 as h→ 0
+ High order: hp+1

to controlled precision ε := (1/5)q

Singular quadrature Fast Algorithms

“Global” QBX: Dealing with geometry

Γ

Ω

c

b

Singular quadrature Fast Algorithms

“Global” QBX, part II

Γ
Ω

c

b

Singular quadrature Fast Algorithms

“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)

Singular quadrature Fast Algorithms

“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)

Singular quadrature Fast Algorithms

“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)

Singular quadrature Fast Algorithms

“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)

Singular quadrature Fast Algorithms

“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)

Idea: Manage as additional, finite error
contribution (using p, h ∝ r)

Singular quadrature Fast Algorithms

Other layer potentials

Can’t just do single-layer potentials:

αD
l =

i

4

ˆ
Γ

∂

∂n̂x ′
H

(1)
l (k |x ′ − c |)e ilθ′µ(x ′) dx ′.

Even easier for target derivatives (S ′ et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known–e.g.

(PV)D∗µ(x)|Γ = lim
x±→x

Dµ(x±)∓ 1

2
µ(x).

Alternative: Two-sided average

Singular quadrature Fast Algorithms

Other layer potentials

Can’t just do single-layer potentials:

αD
l =

i

4

ˆ
Γ

∂

∂n̂x ′
H

(1)
l (k |x ′ − c |)e ilθ′µ(x ′) dx ′.

Even easier for target derivatives (S ′ et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known–e.g.

(PV)D∗µ(x)|Γ = lim
x±→x

Dµ(x±)∓ 1

2
µ(x).

Alternative: Two-sided average

Singular quadrature Fast Algorithms

Other layer potentials

Can’t just do single-layer potentials:

αD
l =

i

4

ˆ
Γ

∂

∂n̂x ′
H

(1)
l (k |x ′ − c |)e ilθ′µ(x ′) dx ′.

Even easier for target derivatives (S ′ et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known–e.g.

(PV)D∗µ(x)|Γ = lim
x±→x

Dµ(x±)∓ 1

2
µ(x).

Alternative: Two-sided average

Singular quadrature Fast Algorithms

Spectral behavior

Interior Laplace Dirichlet problem
would try to invert this operator.

Singular quadrature Fast Algorithms

Spectral behavior

Interior Laplace Dirichlet problem
would try to invert this operator.

Singular quadrature Fast Algorithms

Spectral behavior, part II

• QBX wants to approximate a compact operator–let it:

Dµ(x) =
1

2

(
lim

x+→x
Dµ(x+) + lim

x−→x
Dµ(x−)

)
.

Simply use two QBX applications.

• Predictably benign spectral behavior at high frequencies.

Important for iterative solvers (e.g. GMRES)

Not many competing schemes have that!

Singular quadrature Fast Algorithms

Outline

Singular quadrature

Fast Algorithms

Singular quadrature Fast Algorithms

Integral equations + computers

O(n2)

Singular quadrature Fast Algorithms

Integral equations: computational expense

Why is O(n2) a problem?

2 3

Why is O(n2) storage complexity
a problem specifically?

Singular quadrature Fast Algorithms

Integral equations: computational expense

Why is O(n2) a problem?

2 3

Why is O(n2) storage complexity
a problem specifically?

Singular quadrature Fast Algorithms

Integral equations: computational expense

Why is O(n2) a problem?

2 3

Why is O(n2) storage complexity
a problem specifically?

Singular quadrature Fast Algorithms

Integral equations: computational expense

Why is O(n2) a problem?

2 3

Why is O(n2) storage complexity
a problem specifically?

Singular quadrature Fast Algorithms

Integral equations: computational expense
O(n2) not in principle incorrect:
Natural complexity of a dense mat-vec.

·n

n

Or, to be more precise:

O(〈#sources〉 · 〈#targets〉)

= O(〈#rows〉 · 〈#columns〉)Special dense matrices with
faster mat-vecs?

Singular quadrature Fast Algorithms

Integral equations: computational expense
O(n2) not in principle incorrect:
Natural complexity of a dense mat-vec.

·n

n

Or, to be more precise:

O(〈#sources〉 · 〈#targets〉) = O(〈#rows〉 · 〈#columns〉)

Special dense matrices with
faster mat-vecs?

Singular quadrature Fast Algorithms

Integral equations: computational expense
O(n2) not in principle incorrect:
Natural complexity of a dense mat-vec.

·n

n

Or, to be more precise:

O(〈#sources〉 · 〈#targets〉) = O(〈#rows〉 · 〈#columns〉)Special dense matrices with
faster mat-vecs?

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x

= u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Relation to 1D fast algorithm
(HW 4)?

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Relation to 1D fast algorithm
(HW 4)?

Relation to separation-of-
variables?

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Relation to 1D fast algorithm
(HW 4)?

Relation to separation-of-
variables?

Can any matrix be written like
this?

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Relation to 1D fast algorithm
(HW 4)?

Relation to separation-of-
variables?

Can any matrix be written like
this?

Demo

Singular quadrature Fast Algorithms

Faster dense mat-vecs

If A = uvT , then

Ax = (uvT)︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?

Relation to 1D fast algorithm
(HW 4)?

Relation to separation-of-
variables?

Can any matrix be written like
this?

Demo

Define numerical rank

Singular quadrature Fast Algorithms

Questions?

?

Singular quadrature Fast Algorithms

	Singular quadrature
	Special-purpose methods
	Quadrature by expansion
	QBX method design

	Fast Algorithms

