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Kussmaul/Martensen (aka “Kress”)

Theorem (A special integral [Kress LIE Lemma 8.21])
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Exciting?
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Kussmaul/Martensen (aka “Kress”)

KM quadrature demo
DOF choice for KM. . . ?

Describe scheme

Bigger idea hiding in KM. . . ?

What if you knew how to integrate
Laplace and wanted to do Helmholtz?
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Singularity subtraction

ˆ
〈Thing X you would like to integrate〉

=

ˆ
〈Thing Y you can integrate〉

+

ˆ
〈Difference X − Y which is easy to integrate (numerically)〉

Drawback?
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High-Order Corrected Trapezoidal Quadrature

• Conditions for new nodes, weights
(→ linear algebraic system, dep. on n)
to integrate

〈smooth〉 · 〈singular〉+ 〈smooth〉

• Allowed singularities: |x |λ (for |λ| < 1 ), log |x |
• Generic nodes and weights for log singularity

• Nodes and weights copy-and-pasteable from paper

[Kapur, Rokhlin ‘97]

[Alpert ‘99] conceptually similar:

• Hybrid Gauss-Trapezoidal

• Positive weights

• Somewhat more accurate
(empirically) than K-R

• Similar allowed singularities
(λ > −1)

• Copy-paste weights
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Generalized Gaussian

• “Gaussian”:
• Integrates 2n functions exactly with n nodes
• Positive weights

• Clarify assumptions on system of functions (“Chebyshev
system”) for which Gaussian quadratures exist

• When do (left/right) singular vectors of integral operators
give rise to Chebyshev systems?

• In many practical cases!

• Find nodes/weights by Newton’s method
• With special starting point

• Very accurate

• Nodes and weights for download

[Yarvin/Rokhlin ‘98]

Generalizes to nD. . .
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Generalized Gaussian

• “Gaussian”:
• Integrates 2n functions exactly with n nodes
• Positive weights

• Clarify assumptions on system of functions (“Chebyshev
system”) for which Gaussian quadratures exist

• When do (left/right) singular vectors of integral operators
give rise to Chebyshev systems?

• In many practical cases!

• Find nodes/weights by Newton’s method
• With special starting point

• Very accurate

• Nodes and weights for download

[Yarvin/Rokhlin ‘98]

Generalizes to nD. . .

. . . if you know how to make Newton’s
method converge
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Singularity cancellation: Polar coordinate transform

¨
∂Ω

K (x, y)ϕ(y)dsy

=ˆ R

0

ˆ
x+r∈∂Ω∩∂B(x,r)

K (x, x + r)ϕ(x + r)d〈angles〉 r dr

=ˆ R

0

ˆ
x+r∈∂Ω∩∂B(x,r)

Kless singular(x, x + r)

r
ϕ(x + r)d〈angles〉 r dr

where Kless singular = K · r
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Quadrature on triangles

Problem: Singularity can sit anywhere in triangle

→ need lots of quadrature rules (one per target) . . . !?

Possible issue?
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Kernel Regularization

Singularity makes integration troublesome: Get rid of it!

· · ·√
(x − y)2

→ · · ·√
(x − y)2 + ε2

Use Richardson extrapolation to recover limit as ε→ 0.

(May also use geometric motivation: limit along line towards
singular point.)

Primary drawbacks:

• Low-order accurate

• Need to make ε smaller (i.e. kernel more singular) to get
better accuracy

Can take many forms–for example:

• Convolve integrand to smooth it
(→ remove/weaken singularity)

• Extrapolate towards no smoothing

Related: [Beale/Lai ‘01]
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Using just the trapezoidal rule
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Effectively: replacing layer of
charge with discrete sources.

Idea:

• Pick a point off surface: c := x + n̂r
in ‘accurate’ region

• One-sided smooth potential: Field value
there is an approximation to
one-sided limit (Err=O(r))
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Effectively: replacing layer of
charge with discrete sources.

Idea:

• Pick a point off surface: c := x + n̂r
in ‘accurate’ region

• One-sided smooth potential: Field value
there is an approximation to
one-sided limit (Err=O(r))

But: Can do much better!
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QBX in formulas: Notation, Basics

Graf’s addition theorem

Γ
ρ

c

x ′

x

θ′

θ

H
(1)
0 (k |x − x ′|) =

∞∑
l=−∞

H
(1)
l (k|x ′ − c |)e ilθ′Jl(k |x − c |)e−ilθ

Requires: |x − c | < |x ′ − c | (“local expansion”)
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QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =
∞∑

l=−∞
αlJl(kρ)e−ilθ

with

αl =
i

4

ˆ
Γ
H

(1)
l (k|x ′ − c |)e ilθ′σ(x ′) dx ′ (l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!
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QBX in formulas: Formulation, discretization

Compute layer potential on the disk as

Skσ(x) =

p∑
l=−p

αlJl(kρ)e−ilθ

with

αl =
i

4
TN

( ˆ
Γ
H

(1)
l (k |x ′ − c |)e ilθ′σ(x ′) dx ′

)
(l = −∞, . . . ,∞)

Sσ is a smooth function up to Γ.

Now discretize.

Two limits (p,N →∞)! Experiment showed: order matters!

And: failure and repair not actually surprising.
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Error result

∣∣∣∣∣∣Sσ(x)−
p∑

l=−p
αQBX
l Jl(k |x − c |)e−ilθcx

∣∣∣∣∣∣
≤

(
Cp,β rp+1‖σ‖Cp,β(Γ)︸ ︷︷ ︸

Truncation error

+ C̃p,2q,β

(
h

4r

)2q

‖σ‖C2q,β(Γ)︸ ︷︷ ︸
Quadrature error

)

Proof sketch:

1. First, assume exact calculation of coefficients

2. Estimate tail of expansion

3. Estimate quadrature error in coefficients (derivatives/. . . )

4. Sum quadrature errors in truncated expansion

[K, Barnett, Greengard, O’Neil ‘12 (submitted)]
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Achieving high order

Error ≤

(
C rp+1︸︷︷︸

Truncation error

+C

(
h

r

)q

︸ ︷︷ ︸
Quadrature error

)
‖σ‖

Two approaches:

• Asymptotically convergent: r =
√
h

+ Error → 0 as h→ 0
- Low order: h(p+1)/2

• Convergent with controlled precision: r = 5h
- Error 6→ 0 as h→ 0
+ High order: hp+1

to controlled precision ε := (1/5)q
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“Global” QBX: Dealing with geometry

Γ

Ω

c

b
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“Global” QBX, part II

Γ
Ω

c

b
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“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)
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“Local” QBX

It = Is,2

Is,1 Is,3

c

b

Makes geometry process-
ing much simpler

Problem: Expanded field becomes non-
smooth (because of end singularities)

Idea: Manage as additional, finite error
contribution (using p, h ∝ r)
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Other layer potentials

Can’t just do single-layer potentials:

αD
l =

i

4

ˆ
Γ

∂

∂n̂x ′
H

(1)
l (k |x ′ − c |)e ilθ′µ(x ′) dx ′.

Even easier for target derivatives (S ′ et al.):

Take derivative of local expansion.

Analysis says: Will lose an order.

Slight issue: QBX computes one-sided limits.

Fortunately: Jump relations are known–e.g.

(PV )D∗µ(x)|Γ = lim
x±→x

Dµ(x±)∓ 1

2
µ(x).

Alternative: Two-sided average
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Spectral behavior

Interior Laplace Dirichlet problem
would try to invert this operator.
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Spectral behavior, part II

• QBX wants to approximate a compact operator–let it:

Dµ(x) =
1

2

(
lim

x+→x
Dµ(x+) + lim

x−→x
Dµ(x−)

)
.

Simply use two QBX applications.

• Predictably benign spectral behavior at high frequencies.

Important for iterative solvers (e.g. GMRES)

Not many competing schemes have that!
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Integral equations + computers

O(n2)
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Integral equations: computational expense

Why is O(n2) a problem?

2 3

Why is O(n2) storage complexity
a problem specifically?
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Integral equations: computational expense
O(n2) not in principle incorrect:
Natural complexity of a dense mat-vec.

·n

n

Or, to be more precise:

O(〈#sources〉 · 〈#targets〉)

= O(〈#rows〉 · 〈#columns〉)Special dense matrices with
faster mat-vecs?
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Faster dense mat-vecs

If A = uvT , then

Ax = (uvT )︸ ︷︷ ︸
O(n2)

x

= u (vT x)︸ ︷︷ ︸
O(n)︸ ︷︷ ︸
O(n)

If A = u1v
T
1 + u2v

T
2 + ·+ ukv

T
k , then

A =?

Computational cost?
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Faster dense mat-vecs

If A = uvT , then

Ax = (uvT )︸ ︷︷ ︸
O(n2)

x = u (vT x)︸ ︷︷ ︸
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If A = u1v
T
1 + u2v
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2 + ·+ ukv

T
k , then

A =?

Computational cost?

Relation to 1D fast algorithm
(HW 4)?

Relation to separation-of-
variables?

Can any matrix be written like
this?

Demo

Define numerical rank
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Questions?

?
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