Today

Second-kind equations, Attempt 3: Fredholm
Outline

Second-kind equations, Attempt 3: Fredholm
Definition (Adjoint operator)

A^* called adjoint to A if

$$(Ax, y) = (x, A^*y)$$

for all x, y.

- A^* unique
- A^* exists
- A^* linear
- A bounded $\Rightarrow A^*$ bounded
- A compact $\Rightarrow A^*$ compact
Definition (Adjoint operator)

A^* called adjoint to A if

$$(Ax, y) = (x, A^*y)$$

for all x, y.

- A^* unique
- A^* exists
- A^* linear
- A bounded \Rightarrow A^* bounded
- A compact \Rightarrow A^* compact

Adjoint operator in finite dimensions? (in matrix representation)
Adjoint operators

Definition (Adjoint operator)

A^* called adjoint to A if

$$(Ax, y) = (x, A^*y)$$

for all x, y.

- A^* unique
- A^* exists
- A^* linear
- A bounded $\Rightarrow A^*$
- A compact $\Rightarrow A^*$

Adjoint operator in finite dimensions?
(in matrix representation)

What do you expect to happen with integral operators?
Adjoint operators

Definition (Adjoint operator)

A^* called adjoint to A if

$$(Ax, y) = (x, A^*y)$$

for all x, y.

- A^* unique
- A^* exists
- A^* linear
- A bounded $\Rightarrow A^*$ bounded
- A compact $\Rightarrow A^*$ compact

Adjoint operator in finite dimensions?

(in matrix representation)

What do you expect to happen with integral operators?

Adjoint of the single-layer?
Adjoint operators

Definition (Adjoint operator)

A^* called adjoint to A if

$$(Ax, y) = (x, A^*y)$$

for all x, y.

- A^* unique
- A^* exists
- A^* linear
- A bounded $\Rightarrow A^*$ bounded
- A compact $\Rightarrow A^*$ compact

Adjoint operator in finite dimensions? (in matrix representation)

What do you expect to happen with integral operators?

Adjoint of the single-layer?

Adjoint of the double-layer?
Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

\(A : X \to X \) compact.

Then either:

- \(I - A \) and \(I - A^* \) are bijective

or:

- \(\dim N(I - A) = \dim N(I - A^*) \)
- \((I - A)(X) = N(I - A^*)^\perp \)
- \((I - A^*)(X) = N(I - A)^\perp \)
Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

Let $A : X \to X$ be compact.

Then either:

- $I - A$ and $I - A^*$ are bijective

or:

- $\dim N(I - A) = \dim N(I - A^*)$
- $(I - A)(X) = N(I - A^*)^\perp$
- $(I - A^*)(X) = N(I - A)^\perp$

Seen these statements before?
Fredholm Alternative Theorem (Fredholm Alternative [Kress Thm. 4.14])

$A : X \to X$ compact.

Then either:

- $I - A$ and $I - A^*$ are bijective

or:

- $\dim N(I - A) = \dim N(I - A^*)$
- $(I - A)(X) = N(I - A^*)^\perp$
- $(I - A^*)(X) = N(I - A)^\perp$

Seen these statements before?
Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

\[A : X \rightarrow X \text{ compact.} \]

Then either:

- \(I - A \) and \(I - A^* \) are bijective

or:

- \(\dim N(I - A) = \dim N(I - A^*) \)
- \((I - A)(X) = N(I - A^*)^\perp \)
- \((I - A^*)(X) = N(I - A)^\perp \)

Seen these statements before?
Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

A : X → X compact.

Then either:
- \(I - A \) and \(I - A^* \) are bijective

or:
- \(\dim N(I - A) = \dim N(I - A^*) \)
- \((I - A)(X) = N(I - A^*)^\perp \)
- \((I - A^*)(X) = N(I - A)^\perp \)

Seen these statements before?

Translate to language of integral equation solvability
Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

\[A : X \rightarrow X \text{ compact.} \]

Then either:

- \(I - A \) and \(I - A^* \) are bijective

or:

- \(\dim N(I - A) = \dim N(I - A^*) \)
- \((I - A)(X) = N(A) \)
- \((I - A^*)(X) = N(A) \)

Seen these statements before?

Translate to language of integral equation solvability

Rephrase for symmetric kernels

\((K(x, y) = K(y, x)) \)
Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

A : X → X compact.

Then either:

• \(I - A \) and \(I - A^* \) are bijective

or:

• \(\dim N(I - A) = \dim N(I - A^*) \)
• \((I - A)(X) = N(A) \)
• \((I - A^*)(X) = N(A^*) \)

Seen these statements before?

Translate to language of integral equation solvability

Rephrase for symmetric kernels \((K(x, y) = K(y, x))\)

Most-used direction:
Unique (hom) \(\Rightarrow\) Existence (inhom)
Fredholm Alternative

Theorem (Fredholm Alternative [Kress LIE Thm. 4.14])

$A : X \rightarrow X$ compact.

Then either:

- $I - A$ and $I - A^*$ are bijective

or:

- $\dim N(I - A) = \dim N(I - A^*)$
- $(I - A)(X) = N(A)$
- $(I - A^*)(X) = N(A)$

Seen these statements before?

Translate to language of integral equation solvability

Rephrase for symmetric kernels

$(K(x, y) = K(y, x))$

Most-used direction:

Unique (hom) \Rightarrow Existence (inhom)

Where to get uniqueness?
Questions?