
Numerical Analysis (CS 450)

Homework Set 4
Due: April 2, 2014 · Out: March 13, 2014

Problem 1: Optimization Theory (20 points)

(a) Prove that any local minimum of a convex function f on a convex set S ⊆ Rn is a global
minimum of f on S.

Hint : Suppose a local minimum x is not a global minimum. Let y be a point in S such that
f(y) < f(x) and obtain a contradiction considering the line segment between x and y.

(b) Let f : Rn → R and g : Rn → Rm. Consider the optimization problem

min
x
f(x) subject to g(x) = 0.

Show that the Hessian of the Lagrangian function L : Rn+m → R

L(y) = L(x,λ) = f(x) + λTg(x)

is given by

HL(x,λ) =

[
Hf (x) +

∑m
i=1 λiHgi(x) JT

g (x)

Jg(x) O

]
.

Hint: Show this component-by-component, i.e. determine each ∂2

∂yiyj
L(y) in turn, for 1 ≤ i, j ≤

n + m. You’ll find that you will need to distinguish four cases, corresponding to the four
quadrants of the matrix above.

(c) Prove that HL(x,λ) cannot be positive definite.

Hint: A matrix A is positive definite if and only if xTAx > 0 for all x 6= 0.

(d) What does the non-positive-definiteness of HL(x,λ) mean for the solution of the problem
∇L(x,λ) = 0?
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Problem 2: Optimization on quadratic forms (20 points)

Consider the function f : Rn → R given by

f(x) =
1

2
xTAx− xTb+ c,

where A is an n× n symmetric positive definite matrix, b is an n-vector, and c is a scalar.

(a) Provide an analytic expression for the gradient ∇f and the Hessian Hf .

(b) At what point does f attain a minimum?

(c) Show that Newton’s method for finding the minimum converges in one iteration from any
starting point, x0, by showing that the error after one step, e1 := x1 − x∗, is zero.

(d) Show that one step of steepest descent (for this function) can be written as

x1 = x0 +
rTr

rTA r
r,

where r = b−Ax. What happens to the error after one step if the initial error, e0 := x0 − x∗,
is an eigenvector of A?
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Problem 3: Optimization and Nonlinear Data Fitting (20 points)

(a) Write a program to find a minimum of Himmelblau’s function,

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 (1)

using each of the following methods.

(i) Steepest descent

(ii) Newton

(iii) Damped Newton (Newton’s method with a line search)

For each method, plot the path taken in the plane by the approximate solutions for the following
starting vectors in the same plot.

(i)
[
2 2

]T
(ii)

[
2 −1

]T
(iii)

[
−2 2

]T
(iv)

[
−2 −2

]T
Your writeup should include three plots, one for each of the methods. Each plot should have
four paths, corresponding to each of the starting vectors and the contours of the function f(x, y)
in the range [−4, 4].

Which method performs best? Explain.

(b) Using the Gauss-Newton method for nonlinear least squares, fit the model function

f(t,x) = x1 + x2t+ x3t
2 + x4e

x5t (2)

to the following data.

t y

0.00 20.00
0.25 51.58
0.50 68.73
0.75 75.46
1.00 74.36
1.25 67.09
1.50 54.73
1.75 37.98
2.00 17.28

Your function should terminate with an error if the number of iterations exceeds 500. Use a
tolerance of 10−14 to test for convergence.

For each of the starting vectors given below,

(i)
[
0 0 0 0 1

]T
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(ii)
[
1 0 0 0 0

]T
(iii)

[
1 0 0 1 0

]T
Print the values of xi, for 1 ≤ i ≤ 5 and the number of iterations. Also, plot the computed
function f(t,x) and the given data points. If the algorithm does not terminate for some starting
vector, state that explicitly. What results do you observe with different starting vectors?

You may use numpy.linalg.lstsq() to solve the intermediate linear least squares subproblem
at each iteration.
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Problem 4: Stability of Interpolation (20 points)

The so-called Lebesgue constant describes an upper bound on the maximum of an interpolating
polynomial of a function whose absolute value is bounded by 1.

To this end, let S be the set of all such functions:

S :=

{
f : [−1, 1]→ R : f continuous, max

x∈[−1,1]
|f(x)| ≤ 1

}
For a continuous function f : [−1, 1]→ R, let Π(f) be the interpolating polynomial with respect to
a given set of interpolation nodes T = {x1, . . . , xn}. Then the Lebesgue constant is the number

ΛT := max
f∈S

max
x∈[−1,1]

|Π(f)(x)|.

Large Lebesgue constants are bad, because they imply that the interpolant can become large even
if the underlying function being interpolated is small. The Lebesgue constant depends on the
interpolation nodes. In this problem, we will determine it for a number of such nodal sets, namely:

� Equispaced nodes

Use equispaced nodes that include the endpoints −1 and 1.

� Chebyshev nodes

Hint: Chebyshev nodes in the range [−1, 1] are given by

xi = cos

(
2i+ 1

2n
π

)
(3)

for i = 0, . . . , n− 1.

� Gauss-Legendre nodes

Hint: Use scipy.special.legendre() to obtain Gauss nodes in the interval [−1, 1] as shown
below.

import scipy.special as ss

X = ss.legendre(n).weights[:,0]

(These will show up again in the chapter on numerical computation of integrals.)
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Given a set T = {x1, . . . , xn} of n interpolation points in the interval [−1, 1], we can approximate
the Lebesgue constant as follows:

1. Find a Lagrange basis for the interpolating polynomials on your nodal set T :

lj(x) =

n∏
i=1,j 6=i

x− xi
xj − xi

.

Realize that all interpolants will have to be sums of these, and each Lagrange polynomial
represents a function that is one at exactly one interpolation node.

2. Take the absolute value of each Lagrange polynomial and compute the sum of all such functions:

λT (x) =
n∑

j=1

|lj(x)| .

λT provides an upper bound for functions that are one at all interpolation nodes.

3. Finally, determine the maximum of λT over [−1, 1].

Λn−1(T ) = max
x∈[−1,1]

λT (x)

Approximate this maximum by using an equispaced grid of 2,000 points and finding the maximum
value of λT on this grid.

Compute and plot the (approximate) Lebesgue constant for the above nodal sets with node counts
n = 5, 10, 15, 20, 25.

Your output should give a single plot showing the computed Lebesgue constants for each of the
nodal sets.

Relate your results to the Runge phenomenon.

Hint : Use matplotlib.pyplot.semilogy() to plot the values with a linear scale in n on the x axis
and a logarithmic scale for the Lebesgue constant on the y axis.
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Problem 5: Chebyshev polynomials, Vandermonde matrices (20 points)

(a) A function Fn(t) is known to satisfy the Chebyshev three-term recurrence if the following
properties hold.

F0(t) = 1

F1(t) = t

Fn+1(t) = 2tFn(t)− Fn−1(t)

Show that the function
Fn(t) = cos(n arccos(t))

satisfies the Chebyshev three-term recurrence.

Hint: Remember the addition formula for cosines:

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β).

How would this apply to cos((n+ 1) arccos(t))?

(b) Deduce that Fn(t) is a polynomial.

(c) The generalized Vandermonde matrix V for a set of points x1, . . . , xn with a set of functions
ϕ1, . . . , ϕn is given by

Vij = ϕj(xi).

Realize that this matrix captures the essential bit of interpolation: It maps coefficients with
respect to the functions (ϕj) to point values at the points (xi):∑

j=1

αjϕj(xi) =
∑
j=1

Vijαj = (V α)i.

Obviously, V −1 describes the reverse process, and the conditioning of V can tell us quite a
bit about how well-behaved of an operation interpolation is with respect to the given sets of
functions and nodes.

Perform the following steps:

(i) Construct n× n (square!) generalized Vandermonde matrices for n = 5, 10, 15, . . . , 100.

(ii) Plot the condition number of the matrix with respect to n.

for each of the cases below:

(a) Equispaced nodes xi in the interval [−1, 1] (endpoints included), with the monomials
ϕj(x) = xj .

(b) Chebyshev nodes (3) in the interval [−1, 1] with the monomials.

(c) Equispaced nodes xi in the interval [−1, 1] (again, endpoints included), with the Chebyshev
polynomials Fj .

(d) Chebyshev nodes (3) in the interval [−1, 1] with the Chebyshev polynomials Fj .

Your output should include one (clearly labeled) plot as described above showing (and comparing)
the behavior of the condition number for all four cases.

Hint : Use matplotlib.pyplot.semilogy() to plot the values with a linear scale in n on the x
axis and a logarithmic scale for the condition number on the y axis.

(d) Which of the combinations performs best?
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