
Numerical Analysis (CS 450)

Homework Set 5
Due: April 18, 2014 (Friday, because of Exam 2) · Out: April 6, 2014

Problem 1: Interpolation, Newton and Cubic Spline (20 points)

(a) (9 points) Prove that the formula using divided differences:

f [t1, t2, . . . , tk] :=
f [t2, t3, . . . , tk]− f [t1, t2, . . . , tk−1]

tk − t1
f [tj] := f(tj)

indeed gives the coefficient of the jth basis function in the Newton interpolation polynomial.

Hint: Use induction.

(b) (4 × 1.5 = 6 points) Given the three data points (−1, 1), (0, 0), (1, 1), determine the interpolating
polynomial of degree two:

(i) Using the monomial basis

(ii) Using the Lagrange basis

(iii) Using the Newton basis

(iv) Show that the three representations give the same polynomial.

(c) (5 points) Consider interpolating a given set of data points (xi, yi), i = 1, . . . , n using natural
cubic splines. Write a code to set up and solve the linear system that performs this interpolation.
Plot the resulting cubic spline along with the data. For the data, pick n = 6 random points
(xi)

n
i=1 on [0, 1) with values (yi)

n
i=1 in [0, 1).

Hint: Make sure you sort the xi’s after you draw the random numbers and before you start
constructing the spline, to avoid confusing your spline construction code.

Problem 2: Numerical Quadrature (25 points)

The goal of this problem is to compute π using numerical integration using the following equation:∫ 1

0

4

1 + x2
dx = π

and several different quadrature schemes. Your task is to write a function that accomplishes this
using each of the following different schemes.

(a) Composite midpoint rule.

Hint: Perform your own tests by comparing using
scipy.integrate.fixed quad(f, a, b, n=1).
No need to report these.

1 (continued on next page. . .)

(b) Composite trapezoid rule. (Compare with scipy.integrate.trapz(f(X), X) and don’t report
the test results.)

(c) Composite Simpson rule. (Compare with scipy.integrate.simps(f(X), X).)

(d) Monte Carlo method.

The Monte Carlo methods work by drawing n uniform samples (xi)
n
i=1 using a uniform distribu-

tion on the integration domain ([0, 1] in this case) and using the approximation∫ 1

0
f(x) dx ≈ 1

n

n∑
i=1

f(xi).

For the purpose of comparing with the other methods, use h = 1/n as a rough analog of the
‘mesh spacing’ h.

For parts (a) through (d), answer the following prompts for each method:

(i) Compute the approximate value for π using the method with various values of h.

(ii) Characterize the error for each method as a function of h.

Use two different approaches:

� Create a clearly labeled log-log plot. Use the same plot (with a legend). Use the same
plot for all four parts.

� Compute the empirical order of convergence. Use this procedure to estimate this quantity:

We assume that the error depends on the mesh spacings h as E(h) ≈ Chp for
some unknown power p. Taking the log of this approximate equality reveals a
linear function in p:

E(h) ≈ Chp ⇐⇒ logE(h) ≈ log(C) + p log(h).

You can now either do a least-squares fit for logC and p from a few data points
(h,E(h)) (more accurate, more robust), or you can use just two grid sizes h1 and
h2, and estimate the slope: (less accurate, less robust)

p ≈ log(E(h2)/E(h1))

log(h2/h1)
.

This is called the empirical order of convergence or EOC.

(iii) Is there a point beyond which decreasing h yields no further improvement?

2 (continued on next page. . .)

Problem 3: Gaussian Quadrature (10 + 5 + 5 = 20 points)

(a) Let p be a real polynomial of degree n such that:

b∫
a

p(x)xk dx = 0, k = 0, . . . , n− 1.

(i) Show that the n zeros of p are real, simple and lie in the open interval (a, b).

Hint : Consider the polynomial qk(x) = (x− x1)(x− x2) · · · (x− xk), where xi, i = 1, . . . , k
are the roots of p in (a, b). Where does p(x)qk(x) change signs?

(ii) Show that the n-point interpolatory quadrature on [a, b] whose nodes are the zeros of p
has degree 2n− 1.

Hint : Consider the quotient and remainder polynomials when a given polynomial is divided
by p.

(b) Write a function that computes a given integral using Gaussian quadrature. Your Gaussian
quadrature function should nominally have the following signature:

def gauss_quad(f, n, ...):

add code here

You can obtain the nodes using the following snippet:

nodes = scipy.scpecial.legendre(n).weights[:, 0]

(c) Use gauss quad to integrate the following two functions for various quadrature orders n =
1, 2, . . . , 100. For the integrals of both these functions, create a log-plot of error in the Gaussian
quadrature versus the order. Does the error obey E(h) ≈ Chp for some p, in each of the cases?

(i) f(x) = sin 2πx on [−1, 1]

(ii) g(x) = |x| on [−1, 1]

3 (continued on next page. . .)

Problem 4: Numerical Differentiation (15 points)

(a) (5 points) Given a sufficiently smooth function f : R→ R, use Taylor series to derive a second
order accurate, one-sided difference approximation to f ′(x) in terms of the values of f(x),
f(x+ h) and f(x+ 2h).

(b) (5 points) Write a Python function to implement this difference scheme for a function f defined
on [−1, 1].

(c) (5 points) Discretize (−1, 1) using a uniformly spaced mesh with spacing h = 2−k, k = 3, . . . , 20
and obtain the derivative at the sampled points using the above function for f(x) = sinx.
Obtain the error in the derivative using the max norm (i.e. error is measured to be the maximum
of the absolute differences) and make a plot of error versus h. What is the expected order
of convergence? What is the convergence rate that you obtain? Is the error monotonically
decreasing? Explain your observations.

Problem 5: Initial Value Problems (20 points)

Consider the initial value problem

y′ = −200 t y2, with y(0) = 1.

This IVP has the analytical solution

y(t) =
1

1 + 100 t2
.

Implement the following methods to numerically integrate the ODE from t = 0 to t = 1:

(a) Forward Euler method,

(b) Backward Euler method,

(c) Fourth-order Runge-Kutta method.

For each method do the following:

� Use step sizes of h = 0.125, 0.25, 0.5, 1.

� Plot the numerical solution yh versus t for these various values of h. You may plot y on same
plot for comparison.

� Compute the error at t = 1 between yh and y for each h and plot versus h on a loglog plot.

� Based on the error data, what is the order of accuracy for each method?

� Explain whether each method is stable or not.

Your writeup should consist of plots of yh against t (one plot for each method and each of the values
of h), and three error plots–one per method. You should also provide comments on stability and
accuracy of each method.

4

