
Numerical Analysis (CS 450)

4-CreditHour Project

Due: May 14, 2014 · Progress report due: April 16, 2014 · Out: March 18, 2014

Remarks:

� This project will occasionally refer to files in a starter kit. This kit is available as a .zip file
on the class web page.

Part 1: Use Arnoldi to solve linear systems → GMRES

In this problem, we will be using Arnoldi iteration to (iteratively) solve a linear system of equations
Ax = b, where A is square, but otherwise general. (i.e. not symmetric or some such)

(a) Consider the following slight variant of the Arnoldi process as shown in Algorithm 4.9 in the
textbook:

x0 = b {note use of b as starting vector}
q1 = x0/‖x0‖2
for k in 1, 2, . . . , n do

uk = Aqk
for j in 1, 2, . . . , k do

hjk = qTj uk

uk = uk − hjkqj
end for
hk+1,k = ‖uk‖2
if hk+1,k = 0 then

stop
end if
qk+1 = uk/hk+1,k

(∗)
end for

Let Qk be the matrix consisting of the first k columns of Q, and let Hk be the top-left (k+1)×k
submatrix of H.

Show that, at the point (∗) in the algorithm, at iteration k, the identity QT
k+1AQk = Hk holds.

Does the ‘reverse’ identity A = Qk+1HkQ
T
k hold as well?

(b) Recall that the columns of Qk span the kth Krylov subspace Kk = span{b,Ab, . . . ,Ak−1b}.
Let xk ∈ Kk be the vector in Kk that minimizes the residual rk = Axk − b in the 2-norm.
Let yk be such that xk = Qkyk.

Show that ‖rk‖2 = ‖(Hkyk − ‖b‖2e1)‖2, where e1 is the first unit vector e1 = (1, 0, . . . , 0)T .

(c) Describe a procedure to find xk, using a linear least-squares problem with Hk as a building
block.

1 (continued on next page. . . )



(d) Implement the Arnoldi procedure above, and at the point (∗) in the algorithm, insert code to
compute the norm of the residual ‖rk‖2. If ‖rk‖2 < tol (where tol is a parameter passed to
your function), then compute xk and return it as your approximate solution to Ax = b

For this subproblem, you may use numpy.linalg.lstsq to solve the arising least-squares
problem.

A more streamlined version of the method we’ve just derived is known as the Generalized
minimal residual method, or GMRES.

Use the file gmres.py in the starter kit as a starting point for your implementation in this and
the following part. Your code should pass the tests specified in this file, i.e. yield errors and
residuals around machine precision. Include the output of the tests in your writeup.

Note that the parameter A func is a function to compute the matrix-vector product Ax for a
given vector x. The full matrix A is never passed to your implementation, and in fact the full
matrix may not exist anywhere in memory.

For this subproblem, fill in the implementation for my gmres d.

(e) Realize that Hk is upper Hessenberg, and thus implement code to solve the least squares
problem with Hk using Givens rotations.

(Do not build matrices of size k × k or larger to apply one or more Givens rotations!)

For this subproblem, fill in the implementation for my gmres e. Your code should no longer call
numpy.linalg.lstsq or numpy.linalg.qr or use other outside help for solving the least-squares
problem. You may use a canned routine for back-substitution.

Part 2: Derive an integral equation for a second-order boundary value problem

The goal of this project is to solve the second-order linear (but non-constant-coefficient) boundary
value problem (‘BVP’)

u′′ + p(x)u′ + q(x)u = r(x), (1)

u(a) = ua, (2)

u(b) = ub (3)

on the interval [a, b] (with b > a).

Let L := b− a and τ(x) := 1− (x− a)/L. Realize that τ(a) = 1 and τ(b) = 0.

Now, given some (so-called ‘density’) function ϕ, let

u(x) := τ(x)ua + (1− τ(x))ub

+
1

L

(
(b− x)

∫ x

a
ϕ(z)(a− z)dz + (x− a)

∫ x

b
ϕ(z)(b− z)dz

)
. (4)

To solve the above boundary value problem, we choose (4) as the representation of our solution,
based on the new unknown function ϕ.

(a) Show that u(a) = ua and u(b) = ub for any ϕ.

2 (continued on next page. . . )



(b) Show that

u′(x) =
1

L

(
−u(a) + u(b)−

∫ x

a
ϕ(z)(a− z)dz +

∫ x

b
ϕ(z)(b− z)dz

)
.

Hint: Realize that the variable you’re differentiating (x) occurs in the bounds of the integral.
To perform the required differentiation, you may use this relationship:(

∂

∂x

∫ x

a
f(x, z)dz

)
x=x0

= f(x, x0) +

∫ x0

a

∂

∂x
f(x, z)dz.

(c) Show that u′′(x) = ϕ(x).

(d) Plug u, u′ and u′′ into (1) and show that ϕ satisfies the integral equation

ϕ(x) +

∫ b

a
K(x, z)ϕ(z)dz = R(x) (5)

with the so-called ‘kernel’

K(x, z) =

{
−p(x)+(b−x)q(x)

L (a− z) z ≤ x,
p(x)+q(x)(x−a)

L (z − b) z > x,

and the right-hand side

R(x) = −[q(x)[τ(x)ua + (1− τ(x))ub] +
p(x)

L
(−ua + ub)− r(x)]. (6)

Part 3: Build a BVP solver

In this part, we will be using the integral equation machinery just developed to create a somewhat
slow, second-order-accurate solver for our boundary value problem.

(a) Complete the function apply kernel according to its documentation in the file bvp.py in the
starter kit.

Submit this code in a modified version of bvp.py.

(b) Complete the function solve bvp according to its documentation in the file bvp.py in the
starter kit.

To actually solve the BVP, perform the following steps:

1. Evaluate the right-hand R of the integral equation from (5) on mesh. Call the resulting
vector R.

2. Realize that applying the kernel to a function is a linear operation. Let A be the matrix
representing this operation. Note that A is never explicitly built—we can only apply A to a
vector using apply kernel.

Use GMRES (as implemented earlier) to solve the integral equation (5), i.e.

(I + A)ϕ = R.

Evaluate Aϕ by a call to apply kernel.

3 (continued on next page. . . )



3. Recover the solution vector u from ϕ using (4).

This may be easiest to do by yet again calling apply kernel with a different kernel argument.

Submit this code in a modified version of bvp.py.

(c) Your code in bvp.py should pass the tests applied by test bvp.py in the starter kit. Your
estimated order of accuracy should be 2, or close to it.

Include the output of test bvp.py in your writeup.

(d) Count the number of iterations that GMRES requires to converge to a residual tolerance of
10−10. Make your code output this information.

How does this number of iterations depend on the number of discretization points n? Include a
plot of the number of iterations vs. the number of discretization points in your writeup. Choose
your range of points such that the largest problem still finishes in about ten seconds.

Part 4: A toolkit for composite high-order discretization

In this problem, we will be building a toolkit for discretizing (and integrating) functions represented
as piecewise polynomials.

You should use the file legendre discr.py from the starter kit as a starting point for your
implementation.

(a) Begin by writing the constructor of the discretization class. The constructor should compute
and set all the attributes documented in the code template. If the other subroutines you write
end up requiring precomputation, throwing that precomputation into the constructor is likely
also reasonable.

(If you’re a bit hazy on object-oriented programming, now is a good time to look up the relevant
section of the Python tutorial1. If you’ve never even heard the word, don’t be scared. It’s
neither complicated nor a big deal.)

Call the scipy function mentioned in the documentation of the code template to obtain the
Gauss-Legendre nodes on the interval (−1, 1) and map them into each of the subintervals.

(b) Next, fill out the integral method in the template.

Use the Gaussian quadrature weights that you got from the SciPy routine on each subinterval.
(Note that they’ll need scaling to reflect the affine mapping of the points.)

A small part of the test script (see below) should now run already—up until the missing functions
from the next part are called.

(c) Last, fill out the left indefinite integral and right indefinite integral routines ac-
cording to their documentation.

Note that those ask for a ‘spectral integration matrix ’. Suppose x := (xi) are the Gauss-Legendre
nodes on the interval (−1, 1). Then the spectral integration matrix A for that interval has the
following effect:

1http://docs.python.org/2.7/tutorial/classes.html

4 (continued on next page. . . )

http://docs.python.org/2.7/tutorial/classes.html
http://docs.python.org/2.7/tutorial/classes.html


(Af(x))i ≈
∫ xi

−1
f(x)dx

This property can help you find the spectral integration matrix, by inverting the matrix equation

A


x00 x10 · · · xn0
x01 x11 · · · xn1
...

...
. . .

...
x0n x1n · · · xnn

 =


∫ x0

−1 ξ
0dξ

∫ x0

−1 ξ
1dξ · · ·

∫ x0

−1 ξ
ndξ∫ x1

−1 ξ
0dξ

∫ x1

−1 ξ
1dξ · · ·

∫ x1

−1 ξ
ndξ

...
...

. . .
...∫ xn

−1 ξ
0dξ

∫ xn

−1 ξ
1dξ · · ·

∫ xn

−1 ξ
ndξ


Note that this method of finding A is not suitable for large n because of poor conditioning of the
matrix on the left (called the Vandermonde matrix2), but it’s good enough for our purposes.

Observe that the spectral integration matrix implements the indefinite integral (a.k.a. ‘an-
tiderivative’) on each subinterval. You’ll have to think about how to connect the antiderivatives
on each subinterval so that the routine computes the indefinite integral on the whole domain.
This will likely involve using Gaussian quadrature in addition to the spectral integration matrices.

Make sure to keep this routine at linear-time cost as documented.

(d) Run the file test legendre discr.py from the starter kit. Ensure that the test it performs
succeed with your implementation.

Include the output in your writeup.

Part 5: Build a fast and accurate BVP solver

The numerical objective of this part is twofold:

� First, to increase the order of accuracy of your BVP solver from the previous part from 2 to a
user-specified number.

� Second, to reduce its computational cost of from O(n2) to O(n). We will achieve this by
reducing the cost of applying the integral operator.

In summary, we will make your earlier code faster and more accurate at the same time.

The solver you built in the previous part had an O(n2) cost, because there were n integrals to
evaluate, each at a cost of O(n). This seemed unavoidable because the kernel changes with every x,
so it would seem as though the integral would have to be recomputed for each x. It turns out that
this is not the case.

Realize that (each part of) the kernel can be factored according to:

K(x, z) =

{
fl(x)gl(z) z ≤ x
fr(x)gr(z) z > x.

As a result, the matrix representing the kernel has rank one, i.e. it is the outer product of two
vectors K = vwT . Matrices that have (exactly or approximately) low rank are nice because the

2https://en.wikipedia.org/wiki/Vandermonde_matrix

5 (continued on next page. . . )

https://en.wikipedia.org/wiki/Vandermonde_matrix
https://en.wikipedia.org/wiki/Vandermonde_matrix


matrix-vector product with them can be computed quite cheaply. Suppose ϕ is a vector representing
the density, we can use

Kϕ = (vwT )ϕ = v(wTϕ)

to get an O(n) matrix-vector product.

(a) We seek to compute ∫ b

a
K(x, z)ϕ(z)dz

=

∫ x

a
K(x, z)ϕ(z)dz +

∫ b

x
K(x, z)ϕ(z)dz

=fl(x)

∫ x

a
gl(z)ϕ(z)dz + fr(x)

∫ b

x
gr(z)ϕ(z)dz

=:fl(x)Gl(x) + fr(x)Gr(x).

Use the above formula to write a linear-time subroutine that computes the effect of the kernel
on a function discretized using the toolkit from the previous problem.

Recall that you implemented “left-running” and “right-running” indefinite integrals in your
discretization toolkit at O(n) cost.

Complete the function apply kernel according to its documentation in the file fast bvp.py in
the starter kit.

Submit this code in a modified version of fast bvp.py.

(b) Adapt your BVP solver from earlier to use the subroutine from the previous subproblem.

Complete the function solve bvp according to its documentation in the file fast bvp.py in
the starter kit.

Submit this code in a modified version of fast bvp.py.

(c) Your code in fast bvp.py should pass the tests applied by test fast bvp.py in the starter
kit.

Include the output of test fast bvp.py in your writeup. Observe that the test script verifies
that your solver achieves the full order of the polynomial space.

(d) Count the number of iterations that GMRES requires to converge to a residual tolerance of
10−10. Make your code output this information.

How does this number of iterations depend on the number of discretization points n? Include a
plot of the number of iterations vs. the number of discretization points in your writeup. Choose
your range of points such that the largest problem still finishes in about ten seconds.

(e) For the final (most complicated) example from the test script, write a script timing.py that
creates a (properly labeled) plot of computational time vs. the number of subintervals used.
Verify that the plot is (approximately) linear, and include it in your writeup.

Choose the number of subintervals as powers of two. Choose the largest such power so that for
that subinterval count, your code still runs in 10 seconds or less. (For my code on my laptop at
order 5, that’s 218.)

6


