lec 25) don't know errors - how do Q's; we compute them? outline: (not the point!) - FP but: in partal question; when dowe stop? - quit discussion (when the geness stops changing) - non Qin equations

Floating Point Arithmetic

Want: Something like the real numbers... in a computer 32 =15 16 = 74 Have: Integers, made of bits (=)\$ 4=22 $\frac{23 = |6 + 0 + 4 + 2 + |}{1 \cdot 2^{u} \cdot \sqrt{2} \cdot \sqrt{2} + |\sqrt{2} +$ How should we even represent fractions? Idea: Keep going down past exponent zero $23.625 = 1.2^{u} - 0.2^{3} + 1.2^{u} + 1.2^{v} + 1.2^{v}$ $+ 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} \rightarrow (10 \cdot 11 \cdot 10)_{2}$ Could store So: - a fixed number of bits with exponents >= zero - a fixed number of bits with exponents < zero Suppose we use a 64-bit integer, with 32 bits >= 1 and 32 bits < 1. What is the smallest number we can represent? $\begin{pmatrix} z^{3'} & z^{-1} \\ z^{-32} & z^{-1} \\ z^{-32} & z^{-32} \\ z^{-32} & z^{-32}$ 7-32 - 10-10 What is the biggest number we can represent? $2^{31} + 2^{30} + \dots + 2^{0} + 2^{-1} + \dots + 2^{-32} = 4.10^{9}$ What's our range then? 10-10 - 109

What happens if we multiply the largest number by 2? Error What happens if we divide the smallest number by 2? \bigcirc How many accurate decimal digits do we have in a number near l_{D} ? ~19 How many accurate digits do we have in a number near lO^{-9} ? ~17 This is called fixed-point arithmetic, and it's pretty bad. Should be able to do better. Idea: Set a few bits aside to store the largest exponent. How? 1. 23 + 0. 222 + 1. 2211 + Fixed 4 algerts 1. 2-213 + 0. 2-214 +

	What is the:		
20	exponent?	Significand [*] 2	value?
l l			120-5-77
10101100		(101011) ₂ =43	1.34275 - 27
101011	5	-h -	1.34275 · C
101011	0	(1.0(01)=1.34275	1.34075 · Z°
101011	-1	1.34075	1.34375 .7"
	- 3		1.34275 - 2-3
In our 64-bit example:	Exponent ranges from -1022 to 1023		es from
	5	-1022 (0 1025	
 - 1 bit for sign (+/-) - 11 bits for largest exponent			
- 52 bits for "bits"			
 This is called "double precision".			
 βæι βæi	Hive		
What is (very roughly) the smallest n	umber we c	an represent?	
- 2 - 1022	~ smillest	exponent	
(1.00000 00leve), · ~ ~ ~ =	(O. Clease	Deer 1). 2-1022	
What is (very roughly) the largest nu	mber we ca	n represent?	
I. 2 ¹⁰²⁷			
How many accurate decimal digits do we have in the largest			
representable number?			
largest: 21023 & 10307		At dialte	
largest: 21023 & 1020 last bit of sly. 21073-5	10101	<u></u>	
243 0 711 01 514.	× 10 • • ·		

How many accurate decimal digits do we have in the smallest (postive) representable number? ~ smallest; $2^{-1022} \approx 10^{-308}$ smallest number in significand; 10^{-323} 15 digits Same relative accuracy for numbers of every magnitude: Yay! So what could possibly go wrong? Cared 101000000 000 10100000 How many accurate (binary) digits are there in the above result? Zont of 6 catastophic cancellation" h Cull ~ (. en equalizations